Blue Cross of Idaho Logo

Express Sign-on

Thank you for registering with Blue Cross of Idaho

If you are an Individual or Family Member, please register here.

If you are a Medicare Advantage or Medicare Supplement member, please register here.

MP 2.01.47 Light Therapy for Psoriasis 

Medical Policy    
Original Policy Date
Last Review Status/Date
Reviewed with literature search/2:2015
  Return to Medical Policy Index


Our medical policies are designed for informational purposes only and are not an authorization, or an explanation of benefits, or a contract.  Receipt of benefits is subject to satisfaction of all terms and conditions of the coverage.  Medical technology is constantly changing, and we reserve the right to review and update our policies periodically.


Psoriasis is a common chronic immune-mediated disease characterized by skin lesions ranging from minor localized patches to complete body coverage. There are several types of psoriasis; most common is plaque psoriasis which is associated with red and white scaly patches on the skin. In addition to being a skin disorder, psoriasis can negatively impact many organ systems and is associated with an increased
risk of cardiovascular disease, some types of cancer, and autoimmune diseases such celiac disease and Crohn disease.

Topical therapy (eg, corticosteroids, vitamin D analogs) is generally considered to be first-line treatment of psoriasis, especially for mild disease. Phototherapy and systemic therapy are treatment options for patients with more extensive and/or severe disease and those who fail conservative treatment with topical agents. Phototherapy is available in various forms including exposure to natural sunlight, use of BB-UVB
devices, NB-UVB devices, and PUVA. This policy addresses 2 treatments: PUVA and targeted phototherapy, ie, use of ultraviolet light that can be focused on specific body areas or lesions. A related treatment, photodynamic therapy, is addressed in MPRM Policy No. 2.01.44.

Psoralen Plus Ultraviolet A

PUVA uses a psoralen derivative in conjunction with long wavelength UVA light (sunlight or artificial) for photochemotherapy of skin conditions. Psoralens are tricyclic furocoumarins that occur in certain plants and can also be synthesized. They are available in oral and topical forms. Oral PUVA is generally given 1.5 hours before exposure to UVA radiation. Topical PUVA therapy refers to directly applying the psoralen to the skin with subsequent exposure to UVA light. Bath PUVA is used in some European countries for generalized psoriasis, but the agent used, trimethylpsoralen, is not approved by FDA. Paint PUVA and soak PUVA are other forms of topical application of psoralen and are often used for psoriasis localized to the palms and soles. In paint PUVA, 8-methoxypsoralen (8-MOP) in ointment or lotion form is put directly on the lesions. With soak PUVA, the affected areas of the body are placed in a basin of water containing psoralen. With topical PUVA, UVA exposure is generally administered within 30 minutes of psoralen application.

PUVA has most commonly been used to treat severe psoriasis, for which there is no generally accepted first-line treatment. Each treatment option (eg, systemic therapies such as methotrexate, phototherapy, biologic therapies) has associated benefits and risks. Common minor toxicities associated with PUVA include erythema, pruritus, irregular pigmentation, and gastrointestinal tract symptoms; these generally
can be managed by altering the dose of psoralen or UV light. Potential long-term effects include photoaging and skin cancer, particularly squamous cell carcinoma and possibly malignant melanoma. PUVA is generally considered more effective than targeted phototherapy for the treatment of psoriasis. However, the requirement of systemic exposure and the higher risk of adverse reactions (including a higher carcinogenic risk) have generally limited PUVA therapy to patients with more severe disease.

Targeted Phototherapy

Potential advantages of targeted phototherapy include the ability to use higher treatment doses and to limit exposure to surrounding tissue. BB-UVB devices, which emit wavelengths from 290 to 320 nm, have been largely replaced by NB-UVB devices. NB-UVB devices eliminate wavelengths below 296 nm, which are considered erythemogenic and carcinogenic but not therapeutic. NB-UVB is more effective than BBUVB
and approaches PUVA in efficacy. Original NB-UVB devices consisted of a Phillips TL-01 fluorescent bulb with a maximum wavelength (lambda max) at 311 nm. Subsequently, xenon chloride (XeCl) lasers and lamps were developed as targeted NB-UVB treatment devices; they generate monochromatic or very narrow band radiation with a lambda max of 308 nm. Targeted phototherapy devices are directed at specific lesions or affected areas, thus limiting exposure to the surrounding normal tissues. They may therefore allow higher dosages compared with a light box, which could result in fewer treatments to produce clearing.

The original indication of the excimer laser was for patients with mild-to-moderate psoriasis, defined as involvement of less than 10% of the skin. Typically, these patients have not been considered candidates for light box therapy, because the risks of exposing the entire skin to the carcinogenic effects of UVB light may outweigh the benefits of treating a small number of lesions. Newer XeCl laser devices are faster and
more powerful than the original models, which may allow treatment of patients with more extensive skin involvement (10%-20% body surface area). The American Academy of Dermatology does not recommend phototherapy for patients with mild localized psoriasis whose disease can be controlled with topical medications.(4) A variety of topical agents are available including steroids, coal tar, vitamin D analogs (eg, calcipotriol, calcitriol), tazarotene, anthralin.

Regulatory Status

In 2001, an XeCl excimer laser (XTRAC™ by PhotoMedex) received 510(k) clearance from FDA for the treatment of mild to moderate psoriasis. The 510(k) clearance has subsequently been obtained for a number of targeted UVB lamps and lasers, including newer versions of the XTRAC system (eg, XTRAC Ultra™), the VTRAC™ lamp (PhotoMedex), the BClear™ lamp (Lumenis), and the European manufactured Excilite™ and Excilite μ™ XeCl lamps. FDA product code: FTC.

In 2010, the Levia Personal Targeted Phototherapy® UVB device (Daavlin Co., Bryan, OH previously manufactured by Lerner Medical Devices, Los Angeles, CA) was cleared by FDA for home treatment of psoriasis.

The oral psoralen products Oxsoralen-Ultra (methoxsalen soft gelatin capsules) and 8-MOP (methoxsalen hard gelatin capsules) have been approved by FDA; both are made by Valeant Pharmaceuticals. Topical psoralen products have also received FDA approval, eg, Oxsoralen (Valeant Pharmaceuticals). 


PUVA for the treatment of severe, disabling psoriasis, which is not responsive to other forms of conservative therapy (eg, topical corticosteroids, coal/tar preparations, and ultraviolet light), may be considered medically necessary.

Targeted phototherapy may be considered medically necessary for the treatment of moderate to severe localized psoriasis (ie, comprising less than 20% body area) for which NB-UVB or PUVA are indicated.

Targeted phototherapy may be considered medically necessary for the treatment of mild to moderate localized psoriasis that is unresponsive to conservative treatment.

Targeted phototherapy is considered investigational for the first-line treatment of mild psoriasis.

Targeted phototherapy is considered investigational for the treatment of generalized psoriasis or psoriatic arthritis.

Policy Guidelines

Although disease severity is minimally defined by body surface area (mild psoriasis affects less than 5% of the body’s surface area, moderate psoriasis affects 5% to 10%, and severe disease affects more than 10% body surface area), lesion characteristics (e.g., location and severity of erythema, scaling, induration, and pruritus) and impact on quality of life are also taken into account. (1-3) For example, while one handprint is equal to approximately 1% body surface area, lesions on the hands, feet, or genitalia that cause disability may be classified as moderate to severe. While the Psoriasis Area and Severity Index (PASI) may be used as an outcome measure in clinical research, clinical assessment of disease severity is qualitative.

In 2002, CPT established separate codes (96920-96922) that describe ultraviolet light laser treatment for inflammatory disease (psoriasis) according to the surface area of skin treated (total area <250² cm, 250² cm–500² cm, over 500² cm).

The laser treatment codes are distinct from codes that describe the dermatological use of ultraviolet light, also known as actinotherapy (96900), and photochemotherapy (96910-96913).

Established treatments for psoriasis include use of topical ointments and ultraviolet light (“light lamp”) treatments. Lasers and targeted ultraviolet B (UVB) lamps are considered equivalent devices; targeted UV devices are comparable to UV light panels for treatment purposes. First-line treatment of UVsensitive lesions may involve around 6–10 office visits; treatment of recalcitrant lesions may involve around 24–30 office visits. Maintenance therapy or repeat courses of treatment may be required.

During a course of PUVA therapy, the patient needs to be assessed on a regular basis to determine the effectiveness of the therapy and the development of adverse effects. These evaluations are essential to ensure that the exposure dose of radiation is kept to the minimum compatible with adequate control of disease. Therefore, PUVA is generally not recommended for home therapy.

Benefit Application
BlueCard/National Account Issues

Some state or federal mandates (e.g., FEP) prohibit Plans from denying FDA-approved technologies as investigational. In these instances, Plans may have to consider the coverage eligibility of FDA-approved technologies on the basis of medical necessity alone.

Targeted phototherapy has not been shown to be superior to conventional phototherapy. Therefore, benefit or contract language describing the “least costly alternative” may be applied.

Specific contract language regarding definitions of cosmetic/reconstructive services may apply. (Refer to policy No. 10.01.09 for further discussion.)


This policy was originally created in 2001 and was updated regularly with searches of the MEDLINE database. Most recently, the literature was reviewed through December 29, 2014. Following is a summary of the literature to date.

Assessment of efficacy for therapeutic interventions involves a determination of whether the intervention improves health outcomes. The optimal study design for a therapeutic intervention is a randomized controlled trial (RCT) that includes clinically relevant measures of health outcomes. Intermediate outcome measures, also known as surrogate outcome measures, may also be adequate if there is an established
link between the intermediate outcome and true health outcomes. Nonrandomized comparative studies and uncontrolled studies can sometimes provide useful information on health outcomes, but are prone to biases such as selection bias (eg, noncomparability of treatment groups) and observation bias (eg, placebo effect).

Targeted Phototherapy

There are several systematic reviews of the literature on targeted phototherapy. Reviews differed in the type of study they included and in the comparison interventions. In a 2013 systematic review by Almutawa et al, psoralen plus ultraviolet A (PUVA) was the comparison intervention and only evidence from randomized controlled trials (RCTs) was considered.(5) The authors identified 3 RCTs comparing the efficacy of targeted ultraviolet B (UVB) phototherapy with PUVA for treatment of plaque psoriasis. Two of the 3 studies used an excimer laser (308-nm) as the source of targeted phototherapy, and the third study used localized narrowband (NB)-UVB light. There was heterogeneity among studies, and thus a random effects meta-analysis model was used. Using the random effects model, there was not a statistically significant difference between the 2 techniques in the proportion of patients with at least a 75% reduction in psoriasis. The pooled odds ratio (OR) was 3.48 (95% confidence interval [CI], 0.56 to 22.84). (The wide confidence interval indicated a lack of precision in the efficacy estimate). The trials in the systematic review included a study by Neumann et al in which 10 patients were treated with a NB-UVB lamp or cream PUVA.(6) The UVB lamp and PUVA-treated sides showed similar gradual clearing over the course of 20 treatments, reaching 64% clearance at the end of the 5-week treatment period. In another trial, Sezer et al conducted a left-to-right comparison of local NB-UVB versus PUVA paint (3 times per week for 9 weeks) in a cohort of 25 patients.(7) The mean severity index improved by 61% with local NB-UVB and 85% with PUVA paint; 1 patient dropped out of the study because of a phototoxic reaction in the PUVA-paint-treated side.

In 2012, Mudigonda et al published a systematic review of controlled studies (RCTs and non-RCTs) on targeted versus nontargeted phototherapy for patients with localized psoriasis.(8) The authors identified 3 prospective nonrandomized studies comparing the 308-nm excimer laser with NB-UVB; no studies comparing the excimer laser with BB-UVB or PUVA were identified. Among the 3 studies was one by Goldinger et al that compared the excimer laser with full-body NB-UVB in 16 patients. (9) At the end of 20 treatments, the PASI scores were equally reduced on the 2 sides, from a baseline of 11.8 to 6.3 for laser and from 11.8 to 6.9 for nontargeted NB-UVB. Another study, by Kollner et al, included 15 patients with stable plaque psoriasis.(10) The study compared the 308-nm laser, the 308-nm excimer lamp, and standard TL-01 lamps. One psoriatic lesion per patient was treated with each therapy (ie, each patient received all 3 treatments). The investigators found no significant difference in the efficacy of the 3 treatments after 10 weeks. The mean number of treatments to achieve clearance of lesions was 24.

Another systematic review by Mudigonda et al, published in 2012, included noncontrolled observational studies on targeted UVB phototherapy.(11) This article was not limited to the 308 nm excimer laser as was the 2012 review, previously discussed.(8) A total of 9 studies with at least 7 patients were identified; sample sizes ranged from 7 to 124. The authors concluded that the 308 nm excimer laser, 308 nm excimer nonlaser, and nonexcimer light devices were effective for treating localized psoriasis and were safer than whole body phototherapy because uninvolved skin is spared. The review did not pool study findings and did not evaluate separately studies of different psoriasis severity.

A small 2014 sham-controlled RCT by Levin et al evaluated the Levia targeted NB-UVB device.(12) Although the device can be used at home, in the trial, treatments were provided by experienced phototherapists in a clinical setting. The study included patients with bilateral plaque-type psoriasis who had symmetric target lesions 2 to 4 cm in diameter. The minimum target lesion score (TLS) was 6, indicating at least moderate severity. (TLS is a 12-point scale that incorporates erythema, lesion thickness, and scaling.) Patients received targeted phototherapy on a randomly selected side of the body and sham (visible light treatment) on the other side. Treatments were given 3 times weekly for 12 weeks. Seventeen (81%) of 21 randomized patients completed the study. The primary end point, percentage of lesions that were clear or almost clear (TLS 3) at week 12 did not differ significantly between groups. The end point was attained on 10 treated lesions and 7 sham lesions (p=0.118). Two of 3 prespecified secondary end points significantly favored active treatment. The percentage  improvement in TLS was 43% on the treated side and 29% on the sham side (p=0.043). In addition, 12 lesions in the treated group and 7 in the placebo group had at least 50% improvement, as measured by TLS (p=0.020). However, percentage improvement in pruritus visual analog scale score, 62% on the treated side and 27% on the sham side, did not differ significantly between groups. The study had a relatively high dropout rate but because patients served as their own controls, this is not likely to be a major source of bias.

Treatment-Resistant Psoriatic Lesions

Several small studies suggest that targeted phototherapy can be effective for treatment-resistant lesions. One patch comparison reported effective clearing (pre-PASI=6.2; post-PASI=1.0) of treatment-resistant psoriatic lesions; 6 of the patients had previously received topical treatment, 5 had received conventional phototherapy, and 3 had received combined treatments including phototherapy.(13) The same investigator group reported that 12 of 13 patients with “extensive and stubborn” scalp psoriasis (ie, unresponsive to class I topical steroids used in conjunction with tar and/or zinc pyrithione shampoos for at least 1 month) showed clearing following treatment with the 308 nm laser.(14) In a 2006 open trial from Europe, 44 (81%) of 54 patients with palmoplantar psoriasis resistant to combined phototherapy and systemic treatments were cleared of lesions with only 1 NB-UVB lamp treatment weekly for 8 weeks.(15)

Section Summary

Several small RCTs and other small non-RCTs in patients with moderate-to-severe psoriasis have found that targeted phototherapy has efficacy similar to whole body phototherapy or PUVA. Targeted phototherapy is presumed to be safer or at least no riskier than whole body phototherapy. Several nonrandomized studies have found that targeted phototherapy can improve health outcomes in patients with treatment-resistant psoriasis. One small sham controlled RCT evaluating a targeted NB-UVB device had mixed findings; the primary outcome was statistically nonsignificant.

Psoralen Plus Ultraviolet A

Several systematic reviews have been published. As previously noted, Almutawa et al (2013) conducted a pooled analysis of 3 RCTS, 2 of which used an excimer laser, and did not find a statistically significant difference in the efficacy of PUVA and targeted phototherapy in patients with plaque psoriasis.(5) A 2012 industry-sponsored systematic review by Archier et al focused on studies comparing PUVA with NB-UVB in patients with chronic plaque psoriasis.(16) Pooled analysis of 3 RCTs found a significantly higher psoriasis clearance with PUVA compared with NB-UVB (OR=2.79; 95% CI, 1.40 to 5.55). In addition, significantly more patients remained cleared at 6 months with PUVA compared with NB-UVB (OR=2.73: 95% CI, 1.18 to 6.27).

A 2013 systematic review by Almutawa et al identified 8 RCTs that evaluated oral PUVA and reported PASI-75 as an outcome measure.(17) The mean percentage of patients achieving PASI-75 was 73% (95% CI, 56% to 88%). The mean clearance rate in 10 trials of PUVA monotherapy was 79% (95% CI, 68% to 88%). In 4 trials with bath PUVA monotherapy, the mean proportion of patients achieving PASI-75  was 47% (95% CI, 30% to 65%). The authors did not report outcomes in the control groups and thus conclusions cannot be drawn from this analysis on the relative efficacy of PUVA and other psoriasis treatments. A 2013 Cochrane review assessed light therapy for psoriasis.(18) However, that review is less useful for the analysis at hand because the authors combined results of studies using PUVA and BBUVB, rather than reporting outcomes separately for these two treatment modalities.

Representative recent RCTs evaluating PUVA for treating psoriasis are described next.

In 2014, El-Mofty et al in Egypt published an RCT comparing PUVA and BB-UVA in 61 patients with psoriasis affecting at least 30% body surface area.(19) Patients in the BB-UVA group were further randomized to 1 of 2 fixed doses: 10 or 15 J/cm² per session. A maximum of 48 treatment sessions were provided. Clinical outcomes were significantly better in the PUVA group than the BB-UVA groups. For example, complete clearance was obtained by 23 (77%) of 30 patients in the PUVA group, 5 (31%) of 16 patients in the 10 J/cm² UVA group, and 5 (33%) of 15 patients in the 15 J/cm² UVA group (p=0.020).

In 2011, Amirnia et al published a study from Iran in which 88 patients with moderate plaque psoriasis were randomized to receive PUVA or topical steroids.(20) Treatment was continued for 4 months or until clearance was achieved. Clearance was defined as disappearance of at least 90% of baseline lesions. All patients in both groups achieved clearance within the 4-month treatment period. Recurrence (defined as a resurgence of at least 50% of the baseline lesions) occurred significantly more often in the topical steroid group (9/44 [20.5%]) than in the PUVA group (3/44 [6.8%]) (p=0.007).

In 2009, Sivanesan et al published a double-blind RCT evaluating the efficacy of 8-MOP PUVA treatment in patients 18 years and older with moderate-to-severe psoriasis affecting at least 10% body surface area.(21) The study included 40 patients randomly assigned to receive PUVA (n=30) and or UVA plus placebo psoralens (n=10). After washout periods of 2 weeks for topical psoriasis medications and 4 weeks for phototherapy and systemic therapies, patients were treated 3 times weekly for 12 weeks. Twenty-eight patients (70%) completed the study, 21 in the PUVA group and 7 in the UVA plus placebo group. The primary outcome was a 75% or greater improvement in PASI 75 score. In an intention-to-treat analysis with the last observation carried forward to analysis at 12 weeks, 19 (63%) of 30 patients in the PUVA group and 0 (0%) of 10 patients in the UVA plus placebo group achieved PASI 75 (p<0.001). In the per protocol analysis, 18 (86%) of 21 patients in the PUVA group and 0 (0%) of 7 patients in the placebo group achieved PASI 75. There were no serious adverse effects. The trial found a dramatic treatment benefit with PUVA compared with UVA plus placebo; however, there was substantial dropout and no long-term follow-up.

Two RCTs from India compared outcomes after treatment with oral methoxsalen PUVA and NB-UVB. In 2011, Chauhan et al included 51 patients with plaque psoriasis involving more than 20% body surface area.(22) Patients received treatment with NB-UVB or PUVA 3 times weekly. Treatment continued until more than 75% clearance was attained or for a maximum of 16 weeks. Forty-three (84%) of 51 patients
completed the study. Marked improvement (>75% clearance) was seen in 17 (91%) of 21 study completers in the NB-UVB group and 18 (82%) of 22 completers in the PUVA group (p>0.05). The mean time to achieve results was also similar in the 2 groups, a mean of 9.9 weeks with each treatment. A 2010 trial by Dayal et al randomly assigned 60 patients with chronic plaque psoriasis to receive twice weekly PUVA (n=30) or twice weekly NB-UVB phototherapy (n=30).23 After the 3-month treatment period, all patients in both groups had at least 75% clearance of psoriasis or complete clearance. The PASI score did not differ significantly between groups (mean, 1.39 in the PUVA group; mean, 1.61 in the NB-UVB group). The mean number of treatments to achieve clearance, however, was significantly greater in the NB-UVB group than in the PUVA group, 16.4 versus 12.7, respectively.

Section Summary

RCTs and systematic reviews of RCTs have found that PUVA is at least as effective as NB-UVB in patients with moderate-to-severe psoriasis. A 2014 RCT found that PUVA was more effective than BBUVA.

Home Treatment

No studies were identified that compared home-based PUVA with office-based PUVA. A 2010 review of various types of home phototherapies for psoriasis did not discuss any studies on PUVA delivered at home.(4)

Summary of Evidence

The literature supports the use of targeted phototherapy for the treatment of moderate-to-severe psoriasis comprising less than 20% body surface area for which narrowband ultraviolet B (NB-UVB) or photochemotherapy with psoralen plus ultraviolet A (PUVA) are indicated, and for the treatment of mild to moderate localized psoriasis that is unresponsive to conservative treatment. Based on this review, evidence is lacking for the use of targeted phototherapy for the first-line treatment of mild psoriasis or for the treatment of generalized psoriasis or psoriatic arthritis.

Evidence from randomized controlled trials suggests that PUVA is at least as effective as NB-UVB and broadband-UVA for patients with moderate-to-severe psoriasis. In addition, PUVA for severe treatmentresistant psoriasis is well-accepted and is recommended by the American Academy of Dermatology.

There is a lack of evidence that home-based PUVA for treating psoriasis is as safe or effective as office-based treatment.

Practice Guidelines and Position Statements

The American Academy of Dermatology 2010 guideline on the management of psoriasis recommended targeted phototherapy for patients with mild, moderate, or severe psoriasis with less than 10% involvement of the body surface area.4 Systemic PUVA with ultraviolet A is indicated in adults with generalized psoriasis who are resistant to topical therapy.

U.S. Preventive Services Task Force Recommendations
Not applicable.

Medicare National Coverage
Ultraviolet light treatment is covered; targeted phototherapy is not specifically mentioned. There is no national coverage determination on PUVA.


  1. Callen JP, Krueger GG, Lebwohl M, et al. AAD consensus statement on psoriasis therapies. J Am Acad Dermatol. Nov 2003;49(5):897-899. PMID 14576671
  2. Finlay AY. Current severe psoriasis and the rule of tens. Br J Dermatol. 2005;152(5):861-867. PMID 
  3. Legwohl MD, van de Kerkhof P. Psoriasis. In Treatment of Skin Disease: Comprehensive Therapeutic Strategies. London: Mosby; 2005.
  4. Menter A, Korman NJ, Elmets CA, et al. Guidelines of care for the treatment of psoriasis with phototherapy and photochemotherapy. J Am Acad Dermatol. 2010;62(1):114-135. PMID
  5. Almutawa F, Thalib L, Heckman D, et al. Efficacy of localized phototherapy and photodynamic therapy for psoriasis: a systematic review and meta-analysis. Photodermatol Photoimmunol Photomed. Nov 28 2013. PMID 24283358
  6. Neumann NJ, Mahnke N, Korpusik D, et al. Treatment of palmoplantar psoriasis with monochromatic excimer light (308-nm) versus cream PUVA. Acta Derm Venereol. 2006;86(1):22-24.
  7. Sezer E, Erbil AH, Kurumlu Z, et al. Comparison of the efficacy of local narrowband ultraviolet B (NB-UVB) phototherapy versus psoralen plus ultraviolet A (PUVA) paint for palmoplantar psoriasis. J Dermatol. 2007;34(7):435-440.
  8. Mudigonda T, Dabade TS, West CE, et al. Therapeutic modalities for localized psoriasis: 308-nm UVB excimer laser versus nontargeted phototherapy. Cutis. Sep 2012;90(3):149-154. PMID 23094316
  9. Goldinger SM, Dummer R, Schmid P, et al. Excimer laser versus narrow-band UVB (311 nm) in the treatment of psoriasis vulgaris. Dermatology. 2006;213(2):134.
  10. Kollner K, Wimmershoff MB, Hintz C, et al. Comparison of the 308-nm excimer laser and a 308-nm excimer lamp with 311-nm narrowband ultraviolet B in the treatment of psoriasis. Br J Dermatol. 2005;152(4):750-754. PMID
  11. Mudigonda T, Dabade TS, Feldman SR. A review of targeted ultraviolet B phototherapy for psoriasis. J Am Acad Dermatol. Apr 2012;66(4):664-672. PMID 22000769
  12. Levin AA, Aleissa S, Dumont N, et al. A randomized, prospective, sham-controlled study of localized narrowband UVB phototherapy in the treatment of plaque psoriasis. J Drugs Dermatol. Aug 2014;13(8):922-926. PMID 25116969
  13. Taneja A, Trehan M, Taylor CR. 308-nm excimer laser for the treatment of psoriasis: induration-based dosimetry. Arch Dermatol. 2003;139(6):759-764.
  14. Taylor CR, Racette AL. A 308-nm excimer laser for the treatment of scalp psoriasis. Lasers Surg Med. 2004;34(2):136-140.
  15. Nistico SP, Saraceno R, Stefanescu S, et al. A 308-nm monochromatic excimer light in the treatment of palmoplantar psoriasis. J Eur Acad Dermatol Venereol. 2006;20(5):523-526.
  16. Archier E, Devaux S, Castela E, et al. Efficacy of psoralen UV-A therapy vs. narrowband UV-B therapy in chronic plaque psoriasis: a systematic literature review. J Eur Acad Dermatol Venereol. May 2012;26 Suppl 3:11-21. PMID 22512676
  17. Almutawa F, Alnomair N, Wang Y, et al. Systematic review of UV-based therapy for psoriasis. Am J Clin Dermatol. Apr 2013;14(2):87-109. PMID 23572293
  18. Chen X, Yang M, Cheng Y, et al. Narrow-band ultraviolet B phototherapy versus broad-band ultraviolet B or psoralen-ultraviolet A photochemotherapy for psoriasis. Cochrane Database Syst Rev. 2013;10:CD009481. PMID 24151011 
  19. El-Mofty M, Mostafa WZ, Yousef R, et al. Broadband ultraviolet A in the treatment of psoriasis vulgaris: a randomized controlled trial. Int J Dermatol. Sep 2014;53(9):1157-1164. PMID 24697586
  20. Amirnia M, Khodaeiani E, Fouladi RF, et al. Topical steroids versus PUVA therapy in moderate plaque psoriasis: a clinical trial along with cost analysis. J Dermatolog Treat. Apr 2012;23(2):109-111. PMID 21254854
  21. Sivanesan SP, Gattu S, Hong J, et al. Randomized, double-blind, placebo-controlled evaluation of the efficacy of oral psoralen plus ultraviolet A for the treatment of plaque-type psoriasis using the Psoriasis Area Severity Index score (improvement of 75% or greater) at 12 weeks. J Am Acad Dermatol. 2009;61(5):793-798.
  22. Chauhan PS, Kaur I, Dogra S, et al. Narrowband ultraviolet B versus psoralen plus ultraviolet A therapy for severe plaque psoriasis: an Indian perspective. Clin Exp Dermatol. Mar 2011;36(2):169-173. PMID 20545955
  23. Dayal S, Mayanka, Jain VK. Comparative evaluation of NBUVB phototherapy and PUVA photochemotherapy in chronic plaque psoriasis. Indian J Dermatol Venereol Leprol. 2010;76(5):533-537.
  24. Nolan BV, Yentzer BA, Feldman SR. A review of home phototherapy for psoriasis. Dermatol Online J. 2010;16(2):1.





CPT  96900  Actinotherapy (ultraviolet light)  
  96912 Photochemotherapy, psoralens, and ultraviolet A (PUVA)
  96920 Laser treatment for inflammatory skin disease (psoriasis); total area less than 250 sq cm 
  96921  Total area 250–500 sq cm 
  96922  Total area greater than 500 sq cm 
ICD-9 Procedure 99.83 Other phototherapy (includes photochemotherapy)
Other ICD-9 Diagnosis  696.1  Psoriasis 
HCPCS J8999 Prescription drug, oral, chemotherapeutic, not otherwise specified  
ICD-10-CM (effective 10/1/15) L40.0 - L40.9 Psoriasis code range
ICD-10-PCS (effective 10/1/15)   ICD-10-PCS codes are only used for inpatient services. There is no specific ICD-10-PCS code for this therapy.
  6A600ZZ: 6A601ZZ Extracorporeal therapies, physiological systems, phototherapy skin, codes for single and multiple
Type of Service  Medicine 
Place of Service  Outpatient 

Laser Treatment, Psoriasis
Photomedex; Laser Treatment of Psoriasis
Psoriasis; Laser Treatment (Photomedex)
XTRAC Laser, Psoriasis
Targeted Phototherapy, Psoriasis
Psoriasis; Targeted Phototherapy
Psolarens with Ultraviolet A (PUVA)
Psoriasis, PUVA Treatment
PUVA (Psoralens with Ultraviolet A)

Policy History

Date Action Reason
11/20/01 Add to Medicine section New policy
12/18/02 Replace policy Update CPT codes only
04/29/03 Replace policy Policy updated; policy statement unchanged, references new CPT codes added.
11/9/04 Replace policy Literature review update for the period of 2003 through August 2004; references added. Policy statement unchanged
09/27/05 Replace policy Literature review updated for the period of August 2004 through July 2005; reference number 12 added. Policy statement unchanged
4/25/06 Replace policy – error correction only Reference 8 corrected.
12/12/06 Replace policy Literature review conducted for the period of 2001 through November 2006; policy revised and rewritten; 7 references added; policy statements revised to include medically necessary and investigational uses
12/13/07 Replace Policy Policy updated with literature review; references 4, 5 and 18, 19 added; severity definitions added to policy guidelines; policy statement clarified.
01/14/10 Replace policy Policy updated with literature review; rationale extensively rewritten; reference number 1 added; other references renumbered/removed; no change to policy statements.
01/13/11 Replace policy Policy updated with literature review; references number 1 updated; no change to policy statements.
1/12/12 Replace policy Policy updated with literature review; reference 10 added, other references renumbered or removed; no change to policy statements
2/09/12 Replace policy Scope of policy changed to include PUVA for psoriasis. Policy title changed to “Light Therapy for Psoriasis.” Policy statement added that PUVA may be considered medically necessary for the treatment of severe, disabling psoriasis, which is not responsive to other forms of conservative therapy. “Localized” added to second policy statement on targeted phototherapy. Reference numbers 16-21 added; other references renumbered. Archived Policy 2.01.07 – Psoralens with Ultraviolet A (PUVA) in Psoriasis.
02/14/13 Replace Policy Policy updated with literature review. No change to policy statements. References 6, 12, and 16 added; other references renumbered or removed.
2/13/14 Replace policy Policy updated with literature review through January 2, 2014. No change to policy statements. References 5, 16, and 17 added; other references renumbered or removed.
2/12/15 Replace policy Policy updated with literature review through December 29, 2014. Policy statements unchanged. References 12 and 19 added.