Blue Cross of Idaho Logo

Express Sign-on

Thank you for registering with Blue Cross of Idaho

If you are an Individual or Family Member under age 65, please register here.

If you are an Medicare or Medicare Supplement member, please register here.

New Options for Affordable Health Insurance
MP 2.04.15 Bone Turnover Markers for the Diagnosis and Management of Osteoporosis and Diseases Associated wtih High Bone Turnover

Medical Policy    
Original Policy Date
Last Review Status/Date
Reviewed with literature search/10:2012
  Return to Medical Policy Index


Our medical policies are designed for informational purposes only and are not an authorization, or an explanation of benefits, or a contract.  Receipt of benefits is subject to satisfaction of all terms and conditions of the coverage.  Medical technology is constantly changing, and we reserve the right to review and update our policies periodically.


Bone turnover markers are biochemical markers of either bone formation or bone resorption. Commercially available tests are available to assess some of these markers in urine and/or serum by high performance liquid chromatography (HPLC) or immunoassay. Assessment of bone turnover markers is proposed to supplement bone mineral density (BMD) measurement in the diagnosis of osteoporosis and to aid in treatment decisions. Bone turnover markers could also potentially be used to evaluate treatment effectiveness before changes in BMD can be observed.

After cessation of growth, bone is in a constant state of remodeling (or turnover), with initial absorption of bone by osteoclasts followed by deposition of new bone matrix by osteoblasts. This constant bone turnover is critical to the overall health of the bone, by repairing microfractures and remodeling the bony architecture in response to stress. Normally, the action of osteoclasts and osteoblasts is balanced, but bone loss occurs if the 2 processes become uncoupled. Bone turnover markers can be categorized as bone formation markers or bone resorption markers and can be identified in serum and/or urine. The table summarizes the various bone-turnover markers.

Formation Markers

Resorption Markers 
Serum osteocalcin (OC)   Serum and urinary hydroxyproline (Hyp)  
Serum total alkaline phosphatase (ALP)   Urinary total pyridinoline (Pyr)  
Serum bone specific alkaline phosphatase (B-ALP)   Urinary total deoxypyridinoline (d-Pyr)  
Serum procollagen I carboxyterminal propeptide (PICP)   Urinary-free pyridinoline (f-Pyr, also known as Pyrilinks®)  
Serum procollagen type 1 N-terminal propeptide (PINP)   Urinary-free deoxypyridinoline (f-dPyr, also known as Pyrilinks-D®)  
Bone sialoprotein   Serum and urinary collagen type I cross-linked N-telopeptide (NTx, also referred to as Osteomark)  
  Serum and urinary collagen type I cross-linked C-telopeptide (CTx, also referred to as Cross Laps®)  
  Serum carboxyterminal telopeptide of type I collagen (ITCP)  
  Tartrate-resistant acid phosphatase (TRAP or TRACP)  

There has been recent interest in the use of bone turnover markers to evaluate age-related osteoporosis, a disease characterized by slow, prolonged bone loss, resulting in an increased risk of fractures at the hip, spine, or wrist. Currently, fracture risk is primarily based on measurements of bone mineral density (BMD) in conjunction with other genetic and environmental factors, such as family history of osteoporosis, history of smoking, and weight. It is thought that the level of bone turnover markers may also predict fracture risk, possibly through a different mechanism than that associated with BMD. However, it must be emphasized that the presence of bone turnover markers in the serum or urine is not necessarily related to bone loss. For example, even if bone turnover is high, if resorption is balanced with formation, there will be no net bone loss. Bone loss will only occur if resorption exceeds formation. Therefore, bone turnover markers have been primarily studied as an adjunct, not an alternative, to measurements of BMD to estimate fracture risk and document the need for preventive or therapeutic strategies for osteoporosis. In addition, bone turnover markers might provide a more immediate assessment of treatment response and predict change in BMD in response to treatment. Treatment-related changes in BMD occur very slowly. This fact, coupled with the precision of BMD technologies, suggested that clinically significant changes in BMD could not be reliably detected until at least 2 years. In contrast, changes in bone turnover markers could be anticipated after 3 months of therapy.

In addition, bone turnover markers have been researched in diseases associated with markedly high levels of bone turnover, such as Paget’s disease, primary hyperparathyroidism, and renal osteodystrophy.

Collagen cross-links are generally reliable markers of bone resorption because they are stable in serum and urine. These marker links bind 3 molecules of collagen in the bone and are released from the bone matrix after resorption, either free or bound to the N- or C-telopeptide of collagen. Collagen cross-links may be detected using either HPLC (Pyr and d-Pyr) or immunoassays (Pyr, d-Pyr, CTx, NTx). In addition to collagen cross-links, alkaline phosphatase (ALP) is a commonly used marker due to its ease of measurement; however, it lacks sensitivity and specificity for detecting osteoporosis, since only about half of the ALP activity is derived from bone. Bone-specific alkaline phosphatase (B-ALP) is a better marker of bone formation than ALP. Serum osteocalcin is a small noncollagenous protein that is a product of osteoblasts and thus increased levels reflect bone formation. Tartrate-resistant acid phosphatase (TRAP) is produced by osteoclasts; it is thought to be active in bone matrix degradation.

Several tests for bone turnover markers have been cleared by the U.S. Food and Drug Administration (FDA) using the 510(k) process.

Collagen cross-links tests:

1995: Pyrilinks test (Metra Biosystems, Santa Clara, CA) measures collagen type 1 cross-link, pyridinium

1996: Osteomark test (Ostex International, Seattle, WA) measures cross-linked N-telopeptides of type 1 collagen (NTx)

1999: Serum Crosslaps One-step ELISA test measures hydroxyproline

Other bone turnover tests:

2000: Ostase (Beckman Coulter) measures bone-specific alkaline phosphatase (B-ALP)

2001: N-MID Osteocalcin One-Step ELISA (Osteometer Bio Tech) measures osteocalcin (OC)


Measurement of bone turnover markers is considered investigational in the diagnosis and management of osteoporosis.

Measurement of bone turnover markers is considered investigational in the management of patients with conditions associated with high rates of bone turnover, including but not limited to Paget’s disease, primary hyperparathyroidism and renal osteodystrophy.

Policy Guidelines

CPT code 82523 describes collagen cross links, any method. CPT code 83937 describes osteocalcin testing. There is no specific CPT code for bone-specific alkaline phosphatase (ALK) but several laboratories’ websites identify CPT 84080 (phosphatase, alkaline; isoenzymes) as being used for the Ostase test.

Benefit Application

BlueCard/National Account Issues

State or federal mandates (e.g., FEP) may dictate that laboratory tests approved by the U.S. Food and Drug Administration (FDA) may not be considered investigational and thus these devices may be assessed only on the basis of their medical necessity.


In general, to be considered clinically useful, studies need to demonstrate that tests for bone turnover markers are accurate and reliable and that their use can result in improved health outcomes. For example, to evaluate their utility for diagnosing osteoporosis as an adjunct to bone mineral density (BMD) measurements with dual energy x-ray absorptiometry (DEXA), studies would moreover need to show that bone turnover markers independently predict fracture risk beyond BMD and that the additional information provided by information on bone turnover has the potential to influence treatment decisions and clinical outcomes. Similarly, to be considered useful for monitoring osteoporosis treatment beyond follow-up BMD measurements, bone turnover test results would need to impact the decision to continue or change treatment in a way that leads to improved patient outcomes.

This policy was created in 1999 and updated regularly with literature reviews using MEDLINE. Most recently, the literature was searched from July 2011 through August 2012. Following is a summary of key literature on bone turnover markers published to date:

Diagnosis and management of osteoporosis

Do bone turnover markers independently predict fracture risk beyond bone mineral density measurements?

When this policy was created, there were studies showing that bone turnover markers predicted subsequent risk of osteoporosis-related fractures in postmenopausal women. (1-4) However, studies reported an inconsistent relationship between the change in bone turnover markers in response to therapy and the magnitude of subsequent change in BMD. (5) In addition, there was marked diurnal variation in bone turnover markers in individual patients, and results of markers measured in the urine had to be correlated to the serum creatinine, all of which complicated the interpretation of serial studies. (6)

A 2009 study evaluated the association between bone turnover markers and fracture risk in men. (7) This was a sub-analysis of prospectively-collected data from the Osteoporotic Fractures in Men (MrOS) study. Baseline levels of bone turnover markers were compared in 384 men, age 65 years or older, who had non-spine fractures over an average follow-up of 5 years to 885 men without non-spine fracture. A second analysis compared 72 hip fracture cases and 993 controls without hip fracture. After adjusting for age and recruitment site, the association between non-spine fracture and quartile of the bone turnover marker procollagen type 1 N-terminal propeptide (PINP) was statistically significant (for each analysis, p less than 0.05 was used). The associations between non-spine fracture and quartiles of the 2 other bone turnover markers, beta C-terminal cross-linked telopeptide of type 1 collagen (b-CTX) and tartrate-resistant acid phosphatase 5b (TRACP5b) were not statistically significant. Moreover, the associations between risk of hip fracture and quartiles of bone turnover markers were not statistically significant. However, in the analysis adjusting only for age and recruitment site, when the highest quartile of bone turnover markers was compared to the lower 3 quartiles, the risk of non-spine and hip fractures was significantly increased for procollagen type 1 N-terminal propeptide (PINP) and b-CTX but not TRACP5b. After additional adjustment for baseline BMD, or baseline BMD and other potential confounders, there were no statistically significant relationships between any bone turnover marker and fracture risk. The authors concluded that their results do not support the routine use of bone turnover markers to assess fracture risk in older men when there is the option of measuring hip BMD.

A systematic review published in 2012 by Biver and colleagues reviewed the literature on bone turnover markers for diagnosing osteoporosis and predicting fracture risk. (8) To be included in the review, studies needed to report at least one bone turnover marker and report either BMD or fracture assessment. The investigators did not limit their review to particular types of study design; they identified 105 reports on women and 18 reports on men. In post-menopausal women, the markers that have been studied the most and also have the strongest negative correlations with BMD are alkaline phosphatase (ALP), osteocalcin (OC), type 1 cross-linked C-telopeptide (CTx), and type 1 cross-linked N-telopeptide (NTx). The investigators addressed the issue of the potential association between bone turnover markers and prevalent asymptomatic vertebral fractures. A pooled analysis was conducted only for the marker osteocalcin (OC). When findings from 3 studies were pooled, there was not a statistically significant mean difference in OC levels in patients with and without vertebral fractures (1.61 ng/mL, 95% confidence interval [CI]: -0.59 to 3.81). The authors also reported that bone turnover markers were not able to reliably distinguish primary osteoporosis from secondary causes. There was a high degree of heterogeneity among the published studies included in this review. According to these data, the clinical usefulness of bone turnover markers for diagnosing osteoporosis is low due to patient variability and other factors that can influence bone turnover marker levels.

A second systematic review by the same research group included an evaluation of the literature on the association between bone turnover markers and subsequent risk of fracture in post-menopausal women. (9) The authors did not conduct any pooled analyses of study findings. Based on their review of observational data, they concluded that bone turnover markers have a modest positive correlation with fractures and can be considered independent risk factors for future fracture risk. The authors also noted, however, that there is a large degree of variability in the literature. In addition, there is a lack of standardized measures and optimal cutoffs for bone turnover markers, and as a result, it is difficult to use bone turnover markers to make practical treatment decisions in clinical care.

Do bone turnover markers independently predict response to osteoporosis treatment?

Studies have also examined the ability of bone turnover markers to evaluate response to osteoporosis treatment. For example, a subanalysis of the randomized Fracture Intervention Trial (n=6,184) by Bauer and colleagues found that pretreatment levels of the bone turnover marker PINP significantly predicted the anti-fracture efficacy of alendronate. (10) Over a mean follow-up of 3.2 years, there were 492 non-spine and 294 vertebral fractures. Compared to those in the placebo group, the efficacy of alendronate for reducing non-spine fractures was significantly greater in women who were in the highest tercile of PINP (>56.8 ng/mL) than those in the lowest tercile (<41.6 ng/mL). Baseline bone turnover rates were not associated with alendronate efficacy in reducing vertebral fractures. The authors indicated that this result needed confirmation in additional studies, and, even if verified, the impact on treatment recommendations is not clear. A small randomized trial of an osteoporosis treatment (n=43) found that urinary cross-linked N-terminal telopeptides provided a more sensitive measure of treatment response than serum levels. (11) Another small randomized trial from Japan measured levels of OC in response to osteoporosis treatment in 109 postmenopausal women. (12) The authors found that undercarboxylated osteocalcin (uc-OC) levels in serum were significantly lower at 1 month in the group receiving active treatment for osteoporosis compared to the control intervention; the implication for fracture prevention was not studied.

A 2011 systematic review by Funck-Brentano and colleagues addressed the issue of whether early changes in serum biochemical bone turnover markers predict the efficacy of osteoporosis therapy. (13) Their review included 24 studies that presented correlations between bone turnover markers and the outcomes of fracture risk reduction or change in BMD. Five studies (including the Bauer study, described above) reported on fracture risk and 20 studies reported on BMD changes. The review authors discussed study findings qualitatively but did not pool study results. The evidence did not support a correlation between short-term changes in bone turnover markers and fracture risk reduction. In addition, few studies were available on this topic, leading to the conclusion that bone turnover markers “have shown limited value” as a technique to monitor osteoporosis therapy.

Does information provided by bone turnover markers improve treatment decisions and/or improve health outcomes?

Several randomized controlled trials (RCTs) have addressed the issue of whether measurement of bone turnover markers can improve adherence to oral bisphosphonate treatment. In 2012, Silverman and colleagues randomized 239 women with BMD at least 2 standard deviations (SD) below normal and a new prescription for alendronate to 1 of 4 treatment groups. (14) The first group received educational materials each month, the second received results of bone turnover markers at baseline and 3 and 12 months, the third group received both bone marker and educational information, and the fourth group, received usual care. Overall, 130 of 240 (54%) patients adhered to medication through the 12-month follow-up. According to survival analysis, there was no significant difference among groups in adherence rates. For example, the relative risk of non-adherence between group 2 (received results of bone turnover marker tests) and the control group was 0.95 (95% CI: 0.72 to 1.26, p>0.91). Exact rates of adherence by group were not reported.

A 2011 industry-sponsored study by Roux and colleagues from France randomized physicians to manage patients on oral monthly ibandronate with a collagen cross-inks test (CTX) or usual care. (15) Eighty-six physicians who recruited at least one patient were included in the CTX group, and 74 were included in the usual care group. Physicians in the CTX group recruited a total of 346 patients, and physicians in the usual care group recruited 250 patients. In the CTX group, bone marker assessment was done at baseline and week 5 and, at the week 6 visit, a standardized message was delivered to patients regarding change in CTX since baseline. If the decrease in CTX was more than 30% of the baseline value, they were told that the treatment effect was optimal. If not, they were told that the treatment effect was sub-optimal and they were given additional advice. Patients told they had a sub-optimal response were re-tested with CTX at week 13 for the week 14 visit. The primary outcome was the proportion of patients who were adherent at 1 year. After 1 year, rates of adherence to ibandronate were 74.8% in the CTX group and 75.1% in the usual care group; the difference between groups was not statistically significant, p=0.93. There was also not a statistically significant difference in the proportion of patients having taken at least 10 out of 12 pills; 82.4% in the CTX group and 80.0% in the usual care group. The adherence rates reported in this study were higher than those expected in clinical care, but monitoring bone markers did not improve adherence to oral osteoporosis medication.

Management of other conditions associated with high rates of bone turnover

There is little published literature on use of bone turnover markers in the management of conditions associated with high rates of bone turnover, such as Paget’s disease, primary hyperparathyroidism, and renal osteodystrophy. Moreover, very few studies on this topic have been published since 2000. One recent study, by Rainon and colleagues, reported on 198 patients with primary hyperparathyroidism who underwent parathyroidectomy. (16) The authors found a statistically significant association (p<0.05) between pre-operative serum osteocalcin levels and persistent postoperative elevation of parathyroid hormone 6 months after the surgery. In addition, several studies were identified that tested bone turnover levels in patients with Paget’s disease before and after treatment with bisphosphonates. (17-19) For example, Alvarez and colleagues found that the mean values of bone markers decreased significantly after bisphosphonate treatment in 31 of 38 patients who completed a 3-month course of oral bisphosphonates. Bone markers measured in the Alvarez study included serum total alkaline phosphatase (ALP), serum bone-specific alkaline phosphatase (B-ALP), and PINP and urinary hydroxyproline (Hyp), CTx and NTx. No studies were identified that addressed whether bone turnover markers for these conditions associated with high bone turnover resulted in improved patient management decisions or health outcomes.


The literature suggests that bone turnover marker levels may be independently associated with osteoporosis and fracture risk in group of individuals. However, there is insufficient evidence that current methods for measuring bone turnover markers are sufficiently sensitive to reliably determine individual treatment responses. In addition, there is insufficient evidence from controlled studies that bone turnover marker measurement improves adherence to treatment or improves health outcomes such as reducing fracture rates. Thus, the use of bone turnover markers for the diagnosis and management of osteoporosis is considered investigational. There is insufficient evidence that measurement of bone turnover markers improves patient management or health outcomes in patients with conditions associated with high bone turnover including Paget’s disease, primary hyperparathyroidism, and renal osteodystrophy. Thus, bone turnover marker testing for these other conditions is considered investigational.

Practice Guidelines and Position Statements

In 2008, the National Osteoporosis Foundation issued a guideline that applied to postmenopausal women and men aged 50 years and older. (20) The guideline stated that although biochemical markers of bone turnover may be predictive of greater mean BMD responses when evaluating large groups of patients in clinical trials, the “precision error” of the specific biochemical marker, along with daily and seasonal variability in bone turnover, must be taken into account when evaluating individuals. Thus, “because of the high degree of biological and analytical variability in measurement of biochemical markers, changes in individuals must be large in order to be clinically meaningful.” Alternative measures of bone strength have the potential to assess individual responses to treatment or identify individuals at high risk of future fracture, thereby potentially altering clinical management. However, current methods for measuring collagen cross-links are not sufficiently sensitive (the least significant change) to reliably determine individual treatment responses, and other types of assays appear to be at an early stage of development.

In 2010, the North American Menopause Society issued an updated position statement on management of osteoporosis in postmenopausal women. The statement included the recommendation, “the routine use of biochemical markers of bone turnover in clinical practice is not generally recommended.” (21)

In 2011, the International Osteoporosis Foundation (IOF) and the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) published a position statement by a joint IOF–IFCC Bone Marker Standards Working Group. (22) The aim of the group was to evaluate evidence on using bone turnover markers for fracture risk assessment and monitoring of treatment. The group’s overall conclusion was, “In summary, the available studies relating bone turnover marker changes to fracture risk reduction with osteoporosis treatments are promising. Further studies are needed that take care of sample handling, ensure that bone turnover markers are measured in all available patients, and use the appropriate statistical methods, including an assessment of whether the final bone turnover marker “level is a guide to fracture risk.

In 2011, the Joint Official Positions Development Conference of the International Society for Clinical Densitometry and the IOF on the FRAX® fracture risk prediction algorithms published the following statement (23):

“Evidence that bone turnover markers predict fracture risk independent of BMD is inconclusive. Therefore, bone turnover markers are not included as risk factors in FRAX.”

Medicare National Coverage

On November 25, 2002, the Centers for Medicare and Medicaid Services (CMS) issued a National Coverage Determination (NCD) on collagen cross-links. (24) The CMS NCD identifies a set of clinical conditions for which collagen cross-links would be considered eligible for coverage. The CMS NCD is limited to urine-based collagen cross-link tests and does not address serum-based collagen cross-link tests.

The Federal Register (25) notes that Medicare carriers have discretion to make their own determinations on the medical necessity of serum-based collagen cross-link tests for assessing or monitoring bone loss therapy. The Federal Register also notes that the FDA approved the serum-based collagen cross-link tests under 510(k) review, as substantially equivalent to the urine-based collagen cross-link test. It should be noted that the serum-based collagen cross-link tests are more commonly performed than urine collagen cross-link tests.

The Medicare NCD analysis focused on the technical feasibility of collagen cross-links and anticipated outcomes. The discussion above focused on the impact on health outcomes as documented in controlled studies.



  1. Bauer DC, Black DM, Ott SM et al. Biochemical markers predict spine but not hip BMD response to bisphosphonates: the Fracture Intervention Trial (FIT). J Bone Miner Res 1997; 12(suppl 1):S150.
  2. Bone HG, Downs RW, Tucci JR et al. Dose-response relationships for alendronate treatment in osteoporotic elderly women. J Clin Endocrine Metab 1997; 82(1):265-74.
  3. Garnero P, Hausherr E, Chapuy MC et al. Markers of bone resorption predict hip fracture in elderly women: the EPIDOS prospective study. J Bone Miner Res 1996; 11(10):1531-8.
  4. Marcus R, Holloway L, Wells B. Turnover markers only weakly predict bone response to estrogen: the Postmenopausal Estrogen/Progestin Interventions Trial (PEPI). J Bone Miner Res 1997; 12(suppl 1):S103.
  5. Looker AC, Bauer DC, Chestnut CH et al. Clinical use of biochemical markers of bone remodeling: current status and future directions. Osteoporosis Int 2000; 11(6):467-80.
  6. Blumsohn A, Eastell R. The performance and utility of biochemical markers of bone turnover: do we know enough to use them in clinical practice? Ann Clin Biochem 1997; 34(pt. 5):449-59.
  7. Bauer DC, Garnero P, Harrison SL et al. Biochemical markers of bone turnover, hip bone loss and fracture in older men: the MrOS Study. J Bone Mineral Res 2009; 24(12):2032-8.
  8. Biver E, Chopin F, Coiffier G et al. Bone turnover markers for osteoporotic status assessment? A systematic review of their diagnosis value at baseline in osteoporosis. Joint Bone Spine 2012; 79(1):20-5.
  9. Chopin F, Biver E, Funck-Brentano T et al. Prognostic interest of bone turnover markers in the management of postmenopausal osteoporosis. Joint Bone Spine 2012; 79(1):26-31..
  10. Bauer DC, Garnero P, Hochberg MC et al. Pretreatment levels of bone turnover and the antifracture efficacy of alendronate: the Fracture Intervention trial. J Bone Miner Res 2006; 21(2):292-9.
  11. Abe Y, Ishikawa H, Fukao A. Higher efficacy of urinary bone resorption marker measurements in assessing response to treatment for osteoporosis in postmenopausal women. Tohoku J Exp Med 2008; 214(1):51-9.
  12. Shiraki M, Itabashi A. Short-term menatetrenone therapy increases gamma-carboxylation of osteocalcin with a moderate increase of bone turnover in postmenopausal osteoporosis: a randomized prospective study. J Bone Miner Metab 2009; 27(3):333-40.
  13. Funck-Brentano T, Biver E, Chopin F et al. Clinical utility of serum bone turnover markers in postmenopausal osteoporosis therapy monitoring: a systematic review. Semin Arthritis Rheum 2011; 41(2):157-69.
  14. Silverman SL, Nasser K, Nattrass S et al. Impact of bone turnover markers and/or educational information on persistence to oral bisphosphonate therapy: a community setting-based trial. Osteoporos Int 2012; 23(3):1069-74.
  15. Roux C, Giraudeau B, Rouanet S et al. Monitoring of bone turnover markers does not improve persistence with ibandronate treatment. Joint Bone Spine 2012; 79(4):389-92..
  16. Rianon N, Alex G, Callender G et al. Preoperative serum osteocalcin may predict postoperative elevated parathyroid hormone in patients with primary hyperparathyroidism. World J Surg 2012; 36(6):1320-6.
  17. Woitge HW, Oberwittler H, Heichel S et al. Short- and long-term effects of ibandronate treatment on bone turnover in Paget disease of bone. Clin Chem 2000; 46(5):684-90.
  18. Reid IR, Davidson JS, Wattie D et al. Comparative responses of bone turnover markers to bisphosphonate therapy in Paget's disease of bone. Bone 2004; 35(1):224-30.
  19. Alvarez L, Guanabens N, Peris P et al. Usefulness of biochemical markers of bone turnover in assessing response to the treatment of Paget's disease. Bone 2001; 29(5):447-52.
  20. National Osteoporosis Foundation. Clinician's guide to prevention and treatment of osteoporosis. Available online at: Last accessed September, 2012.
  21. North American Menopause Society. Management of osteoporosis in postmenopausal women: 2010 position statement of the North American Menopause Society. Menopause 2010; 17(1):25-54; quiz 55-6.
  22. Vasikaran S, Cooper C, Eastell R et al. International Osteoporosis Foundation and International Federation of Clinical Chemistry and Laboratory Medicine Position on bone marker standards in osteoporosis. Clin Chem Lab Med 2011; 49(8):1271-4.
  23. McCloskey EV, Vasikaran S, Cooper C. Official Positions for FRAX(R) clinical regarding biochemical markers from Joint Official Positions Development Conference of the International Society for Clinical Densitometry and International Osteoporosis Foundation on FRAX(R). J Clin Densitom 2011; 14(3):220-2.
  24. CMS National Coverage Determinations. 190.19 Collagen Crosslinks, Any Method. Available online at: Last accessed September, 2012.
  25. Federal Register, November 23, 2001. Rules and Regulations. 66(No. 226).







Collagen cross links, any method 

  83937 Osteocalcin (bone g1a protein)
  84080 Phosphatase, alkaline; isoenzymes

ICD-9 Diagnosis 






ICD-10-CM (effective 10/1/13)     Investigational for all relevant diagnoses  
   M81.0 – M81.8 Osteoporosis without current pathological fracture code range (includes osteoporosis NOS)  
   Z13.820 Encounter for screening for osteoporosis  
   Z82.62 Family history of osteoporosis  
ICD-10-PCS (effective 10/1/13)    Not applicable. No ICD procedure codes for laboratory tests. 

Type of Service 


Place of Service 



Bone Turnover Markers
Collagen Cross links, Osteoporosis
Osteoporosis, Bone Turnover Markers

Policy History

Date Action Reason
07/16/99 Add to Pathology section New policy
07/12/02 Replace policy Policy reviewed; expanded discussion, additional references, no change in policy statement
10/08/02 Replace policy Policy statement revised to be consistent with policy title
07/17/03 Replace policy Policy updated with information on CMS policy; policy statement unchanged
11/9/04 Replace policy Policy updated; no change in policy statement; references added
08/17/05 Replace policy Policy updated with literature search; no change in policy statement
4/25/06 Replace policy – error correction only Corrected table in description section to remove 2nd listing of urinary hydroxyproline and apply asterisk to serum and urinary hydroxyproline entry
10/10/06 Replace policy Policy updated with literature search; policy statement unchanged. Reference numbers 21 and 22 added.
05/08/08 Replace policy Policy updated with literature search; references reordered; references 21-24 added; earlier rationale summarized; no change in policy statement.
09/10/09 Replace policy Policy updated with literature search; scope changed to include bone turnover markers other than collagen cross links; title and policy statement changed to reflect expanded scope. Reference numbers 10 and 12 added and other references renumbered/removed.
09/16/10 Replace policy Policy updated with literature search; No change to policy statement; references 8 and 14 added.
9/01/11 Replace policy Policy updated with literature search; no change in policy statement. References 8, 9, 13 and 17 added; other references renumbered or removed.
10/11/12 Replace Policy Policy updated with literature search. Title changed to “Bone Turnover Markers for the Diagnosis and Management of Osteoporosis and Diseases Associated with High Bone Turnover.” Policy statement added that bone turnover markers considered investigational in the management of conditions associated with high bone turnover. References 13, 14, 16-19 and 23 added; other references renumbered.