Blue Cross of Idaho Logo

Express Sign-on

Thank you for registering with Blue Cross of Idaho

If you are an Individual or Family Member under age 65, please register here.

If you are an Medicare or Medicare Supplement member, please register here.

New Options for Affordable Health Insurance

 

MP 7.01.133 Microwave Tumor Ablation

Medical Policy    
Section
Surgery
 
Original Policy Date
12/08/2011
Last Review Status/Date
Created with literature search/12:2011
Issue
12:2011
  Return to Medical Policy Index

Disclaimer

Our medical policies are designed for informational purposes only and are not an authorization, or an explanation of benefits, or a contract. Receipt of benefits is subject to satisfaction of all terms and conditions of the coverage. Medical technology is constantly changing, and we reserve the right to review and update our policies periodically.


Description 

Microwave ablation (MWA) is a technique to destroy tumors and soft tissue by using microwave energy to create thermal coagulation and localized tissue necrosis. MWA is used to treat tumors considered to be inoperable or not amenable to resection or to treat patients ineligible for surgery due to age, presence of comorbidities, or poor general health. MWA may be performed as an open procedure, laparoscopically, percutaneously or thoracoscopically under image guidance (e.g., ultrasound, computed tomography [CT] or magnetic resonance imaging [MRI]) with sedation, or local or general anesthesia. This technique may also be referred to as microwave coagulation therapy.

Microwave ablation (MWA) is a technique in which the use of microwave energy induces an ultra-high speed, 915 MHz or 2450 MHz (2.45GHz), alternating electric field which causes water molecule rotation and the creation of heat. This results in thermal coagulation and localized tissue necrosis. In MWA, a single microwave antenna or multiple antennas connected to a generator are inserted directly into the tumor or tissue to be ablated; energy from the antennas generates friction and heat. The local heat coagulates the tissue adjacent to the probe, resulting in a small, approximately 2-3 cm elliptical area (5 x 3 cm) of tissue ablation. In tumors greater than 2 cm in diameter, 2-3 antennas may be used simultaneously to increase the targeted area of MWA and shorten operative time. Multiple antennas may also be used simultaneously to ablate multiple tumors. Tissue ablation occurs quickly, within 1 minute after a pulse of energy, and multiple pulses may be delivered within a treatment session depending on the size of the tumor. The cells killed by MWA are typically not removed but are gradually replaced by fibrosis and scar tissue. If there is local recurrence, it occurs at the edges. Treatment may be repeated as needed. MWA may be used to: 1) control local tumor growth and prevent recurrence; 2) palliate symptoms; and 3) extend survival duration.

Complications from MWA are usually considered mild and may include pain and fever. Other potential complications associated with MWA include those caused by heat damage to normal tissue adjacent to the tumor (e.g., intestinal damage during MWA of the kidney or liver), structural damage along the probe track (e.g., pneumothorax as a consequence of procedures on the lung), liver enzyme elevation, liver abscess, ascites, pleural effusion, diaphragm injury or secondary tumors if cells seed during probe removal. MWA should be avoided in pregnant patients since potential risks to the patient and/or fetus have not been established and in patients with implanted electronic devices such as implantable pacemakers that may be adversely affected by microwave power output.

MWA is an ablative technique similar to radiofrequency or cryosurgical ablation. However, MWA has some potential hypothetical advantages over radiofrequency or cryosurgical ablation. In MWA, the heating process is active, which produces higher temperatures than the passive heating of radiofrequency ablation and should allow for more complete thermal ablation in a shorter period of time. The higher temperatures reached with MWA (over 100° C) can overcome the “heat sink” effect in which tissue cooling occurs from nearby blood flow in large vessels potentially resulting in incomplete tumor ablation. MWA does not rely on the conduction of electricity for heating, and therefore, does not have electrical current flow through patients and does not require grounding pads be used during the procedure since there is no risk of skin burns. Additionally, MWA does not produce electric noise, which allows ultrasound guidance to occur during the procedure without interference, unlike radiofrequency ablation. Finally, MWA can be completed in less time than radiofrequency ablation since multiple antennas can be used simultaneously.

MWA was first used percutaneously in 1986 as an adjunct to liver biopsy. Since that time, MWA has been used for ablation of tumors and tissue for the treatment of many conditions including: hepatocellular carcinoma, colorectal cancer metastatic to the liver, renal cell carcinoma, renal hamartoma, adrenal malignant carcinoma, non-small cell lung cancer, intrahepatic primary cholangiocarcinoma, secondary splenomegaly and hypersplenism, abdominal tumors and other tumors not amenable to resection. Well-established local or systemic treatment alternatives are available for each of these malignancies. The hypothesized advantages of MWA for these cancers include improved local control and those common to any minimally invasive procedure (e.g., preserving normal organ tissue, decreasing morbidity, decreasing length of hospitalization).

Hepatic Tumors. Hepatic tumors can arise either as primary liver cancer (hepatocellular cancer) or by metastasis to the liver from other primary cancer sites. Local therapy for hepatic metastasis may be indicated when there is no extrahepatic disease, which rarely occurs for patients with primary cancers other than colorectal carcinoma or certain neuroendocrine malignancies. At present, surgical resection with adequate margins or liver transplantation constitutes the only treatments available with demonstrated curative potential. Partial liver resection, hepatectomy, is considered the gold standard. However, the majority of hepatic tumors are unresectable at diagnosis, due either to their anatomic location, size, number of lesions, or underlying liver reserve.

Various locoregional therapies for unresectable liver tumors have been investigated including: microwave coagulation, radiofrequency ablation, cryosurgical ablation (cryosurgery), laser ablation, trans-hepatic artery embolization/chemoembolization (TACE), percutaneous ethanol injection, and radioembolization (Yttrium-90 microspheres).

MWA has been investigated as a treatment for unresectable hepatic tumors, both as primary treatment, palliative treatment and as a bridge to liver transplant. In the latter setting, it is hoped that MWA will reduce the incidence of tumor progression while awaiting transplantation and thus maintain a patient’s candidacy for liver transplant during the wait time for a donor organ.

Renal Cell Carcinoma. Radical nephrectomy remains the principal treatment of renal cell carcinoma, however, partial nephrectomy or nephron-sparing surgery has been shown to be as effective as radical nephrectomy, with comparable long-term recurrence-free survival rates, in a select group of patients. Prognosis drops precipitously if the tumor extends outside the kidney capsule, since chemotherapy is relatively ineffective against metastatic renal cell carcinoma. Alternative therapies such as MWA are of interest in patients with small renal tumors when preservation of renal function is necessary (e.g., in patients with marginal renal function, a solitary kidney, bilateral tumors) and in patients with comorbidities that would render them unfit for surgery. Another consideration would be in patients at high risk of developing additional renal cancers (as in von Hippel-Lindau disease).

Regulatory Status

There are several devices cleared for marketing by the U.S. Food and Drug Administration (FDA) through the 510(k) process for MWA. Covidien’s (a subsidiary of Tyco Healthcare) Evident Microwave Ablation System has 510(k) clearance for soft tissue ablation, including partial or complete ablation of non-resectable liver tumors. The following devices have 510(k) clearance for MWA of (unspecified) soft tissue:

  • BSD Medical Corporation’s MicroThermX Microwave Ablation System (MTX-180);
  • Valleylab’s (a subsidiary of Covidien) VivaWave Microwave Ablation System;
  • Vivant’s (acquired by Valleylab in 2005) Tri-Loop Microwave Ablation Probe;
  • MicroSurgeon Microwave Soft Tissue Ablation Device;
  • Microsulis Medical’s Acculis Accu2i; and
  • NeuWave Medical’s Certus 140

These devices are considered substantially equivalent to previously FDA-approved radiofrequency and MWA devices.

This policy does not address MWA for the treatment of splenomegaly or ulcers or as a surgical coagulation tool.

Related Policies

7.01.52 Transurethral Microwave Thermotherapy

7.01.75 Cryosurgical Ablation of Primary or Metastatic Liver Tumors

7.01.91 Radiofrequency Ablation of Primary or Metastatic Liver Tumors

7.01.92 Cryosurgical Ablation of Miscellaneous Solid Tumors Other Than Liver, Prostate, or Dermatologic Tumors

7.01.95 Radiofrequency Ablation of Miscellaneous Solid Tumors Excluding Liver Tumors

8.01.11 Transcatheter Arterial Chemoembolization (TACE) to Treat Primary or Metastatic Liver Malignancies

8.01.43 Radioembolization for Primary and Metastatic Tumors of the Liver


Policy

Microwave ablation of primary and metastatic tumors is considered investigational.


Policy Guidelines

There are no specific CPT codes for this procedure. The unlisted CPT code for the anatomic area should be reported such as code 19499 for unlisted procedure, breast, code 47399 for unlisted procedure, liver, or code 53899 for unlisted procedure, urinary system (for renal tumors).


Benefit Application
BlueCard/National Account Issues

State or federal mandates (e.g., FEP) may dictate that all FDA-approved devices, drugs, or biologics may not be considered investigational, and thus use of these devices may be assessed only on the basis of their medical necessity.


Rationale

The policy was developed with a literature search of the MEDLINE database through October 2011. The findings of the literature search are summarized below with select studies.

Literature Review

Hepatocellular Carcinoma

The literature search identified many publications on studies of microwave ablation (MWA) for hepatocellular carcinoma, primarily small case series and retrospective reviews conducted in China and Japan. Only two studies were indexed in the PubMed database as randomized clinical trials. (1, 2) No randomized controlled trials (RCTs) comparing the use of MWA for hepatocellular carcinoma to the gold standard of surgical resection were identified. The following summarizes 2 systematic reviews (3, 4) and select studies reporting on 25 or more patients. All of the studies demonstrated that the technique of MWA provided good tumor ablation (87-100% ablation of targeted tumors) with low procedural complication rates. Associated morbidity and mortality, as well as overall survival and disease-free survival rates with MWA are similar to radiofrequency ablation, which would be an appropriate comparator in patients with tumors not amenable to surgical resection. However, only one RCT comparing MWA directly to radiofrequency ablation was identified. (1)

In 2009, Ong and colleagues conducted a systematic review of studies on MWA for primary and secondary liver tumors. (3) Based on the results from 25 clinical studies reporting outcomes on MWA, the authors concluded MWA is an effective and safe technique for liver tumor ablation with low complication rates and survival rates comparable to hepatic resection. However, rates of local recurrence after MWA were noted to be higher than hepatic resection. In most studies, hepatocellular carcinoma recurrence rates were approximately 10% but were also noted to be as high as 50%, which the authors indicated can be addressed with further ablation. Survival rates in the studies on MWA for hepatocellular carcinoma were as high as 92% at 3 years and 72% at 5 years, which was noted to be comparable to radiofrequency ablation and percutaneous ethanol injections. Pain and fever were the most frequently reported complications, but complications increased when there were more tumors, larger tumors, and more microwave antennas used. Ong and colleagues concluded MWA is a promising treatment option for the treatment of liver tumors but should be reserved for patients not amenable to hepatic resection. The authors also noted further randomized clinical trials are warranted to compare MWA to other ablation procedures. Bertot and colleagues conducted a systematic review in 2011 of ablation techniques for primary and secondary liver tumors. (4) This review included 2 studies using MWA totaling 1,185 patients. (5, 6) The pooled mortality rate for MWA was 0.23% (95% confidence interval [CI], 0.0–0.58%). Major complication rates were 4.6% for MWA (calculated by using a random effects model since there was significant heterogeneity). The authors concluded percutaneous ablation techniques, including MWA, are safe and have acceptable complication rates for the treatment of liver tumors.

In 2002, Shibata and colleagues reported on 72 consecutive patients with 94 small hepatocellular carcinoma nodules randomized by sealed envelopes to receive either percutaneous MWA or radiofrequency ablation performed by a single surgeon. (1) No significant differences were identified between the 2 treatment group characteristics, e.g., sex, age, nodule size, Child-Pugh cirrhosis class and number of nodules. In the radiofrequency ablation group, complete therapeutic effect was seen in 46 (96%) of 48 nodules (mean size 2.3 cm, range of 1.0-3.7) versus 41 (89%) of 46 nodules (mean size 2.2 cm, range 0.9-3.4) treated with percutaneous MWA (p=0.26). Treatment outcomes were not significantly different between the percutaneous MWA and radiofrequency ablation groups in the rates of untreated disease during a follow-up range of 6-27 months (8 of 46 nodules vs. 4 of 48 nodules, respectively), and major complication rates (4 vs. 1, respectively). Major complications included one case of segmental hepatic infarction in the radiofrequency ablation group. In the MWA group, major complications included one case of each of the following: liver abscess, cholangitis with intrahepatic bile duct dilatation, subcutaneous abscess with skin burn and subcapsular hematoma. Life-threatening complications were not experienced. The number of treatment sessions required per nodule in the radiofrequency ablation group was significantly lower than in the percutaneous MWA group (1.1 vs. 2.4; p<0.001). However, treatment time per session was significantly shorter in the MWA group (33 minutes ± 11) than the radiofrequency ablation group (53 minutes ± 16).

Taniai and colleagues, in 2006, reported on 30 patients with multiple hepatocellular carcinoma tumors who underwent reduction hepatectomy with postoperative transcatheter arterial embolization. (2) Prior to surgery, patients were randomly assigned to receive no intraoperative adjuvant therapy (n=15) or intraoperative adjuvant therapy with either MWA (n=10) or radiofrequency ablation (n=5) of satellite lesions. No significant differences in characteristics were identified between the two treatment groups of no intraoperative adjuvant therapy vs. intraoperative adjuvant therapy, e.g., sex, age, nodule size (maximum tumor size 42.7 mm ± 23.5 vs. 37.8 mm ± 16, respectively), Child-Pugh cirrhosis class and number of nodules. Cumulative survival rates at 3 and 5 years were not significantly different in the group that did not receive intraoperative adjuvant therapy (35.0% and 0%, respectively) versus the intraoperative adjuvant therapy group (35.7% and 7.7%, respectively). A-fetoprotein, number of tumors, maximum tumor size and clinical stage, but not intraoperative adjuvant therapy, were identified as independent prognostic survival factors.

In April 2011, Simo and colleagues retrospectively compared laparoscopic MWA (13 patients with 15 tumors) to radiofrequency ablation (22 patients with 27 tumors) performed by a single surgeon for the treatment of hepatocellular carcinoma. (7) No significant differences were identified between the two treatment group characteristics except for sex (54% vs. 86% male, respectively). Average tumor size was 2.31 cm in the MWA group versus 2.53 cm in the radiofrequency ablation group. The authors reported average tumor ablation volumes were not significantly different at 28.99 cm for MWA and 23.43 cm for radiofrequency ablation. In the MWA group, at a mean follow-up of 7 months, disease-free survival was 54%, with 2 patients having received liver transplants, 31% having disease progression and 15% deceased. The radiofrequency ablation group was followed for a longer period of time at a mean of 19 months. This group experienced 50% survival without evidence of disease, with 4 patients having received liver transplants, 9% having disease progression, 36% deceased, and 5% lost to follow-up. Operative times were shorter in the MWA group (112 ± 40 vs. 149 ± 35 minutes).

In 2011, Zhou and colleagues prospectively evaluated percutaneous MWA for hepatocellular carcinoma in 215 patients with tumors equal to or less than 60 mm (median size 29 mm) in a single center, Phase II study. (8) The authors reported technical effectiveness in all patients. Overall survival rates at 1, 2, 3, 4 and 5 years were 94%, 82.9%, 66%, 54.1% and 44.4%, respectively, and median survival time was 40 months (range 4 to 106 months). Complications related to the procedure included 3 cases of pleural effusion and one case of bile duct injury. In another prospective study by Zhou et al. in 2009, percutaneous MWA was performed on 124 patients with 144 hepatocellular carcinoma lesions and 28 patients with 35 lesions of hepatic metastases. (9) Included in this total of 152 patients were 59 patients with 61 lesions (mean size 27 mm) located less than 5 mm from the gastrointestinal tract and 93 patients with 126 lesions (mean size 24 mm) located more than 5 mm from the gastrointestinal tract. For lesions less than 5 mm from the gastrointestinal tract, the temperatures of the margins were monitored closely during ablation and to prevent thermal injury, ethanol injections were placed into marginal tumor tissue in 33 lesions that were protruding or in contact with the gastrointestinal tract. No procedural complications were noted; however, tumor seeding occurred in 3 patients. Complete ablation was achieved in 47 of 53 lesions (88.7%) in the group with tumors near the gastrointestinal tract and in 116 of the other 126 lesions (92.1%) as confirmed by imaging during the follow-up period ranging from 3-32 months. Local tumor progression occurred in 16 tumors during 1-9 months’ follow-up. Separate treatment outcomes for hepatocellular tumors and hepatic metastasis were not provided.

Lu and colleagues, in 2005, reported on a retrospective comparison of 102 patients with hepatocellular carcinoma treated with either percutaneous MWA (49 patients with 98 nodules, mean size 2.5 cm) or radiofrequency ablation (53 patients with 72 nodules, mean size 2.6 cm). (5) Patient follow-up was 25.1 months in the MWA group and 24.8 months in the radiofrequency ablation group. Complete ablation was not significantly different in the treatment groups and was achieved in 93 of 98 tumors (94.9%) in the MWA group and in 67 of 72 tumors (93.1%) in the radiofrequency ablation group. However, complete ablation rates increased in tumors less than or up to 3 cm in size to 98.6% (73 of 74) in the MWA group and 98% (50 of 51) in the radiofrequency ablation group. In tumors greater than 3 cm, complete ablation rates decreased to 83.3% (20 of 24) in the MWA group and 81% (17 of 21) in the radiofrequency ablation group. There were also no significant differences found in the MWA group versus the radiofrequency ablation group in rates of local tumor recurrence (11.8% vs. 20.9%, respectively), major complications (8.2% vs. 5.7%, respectively) or disease-free survival at 1, 2 and 3 years (45.9%, 26.9% and 26.9% vs. 37.2%, 20.7%, and 15.5%, respectively).

In 2009, Liang et al. reported on a retrospective review of complications experienced with percutaneous MWA for the treatment of 1,928 malignant liver tumors in 1,136 patients at a single institution. (6) Each patient received an average of 1.8 treatment sessions for a total of 3,697 treatment sessions. Thirty patients (2.6%) experienced major complications, which included 5 cases of liver abscess and empyema, 2 bile duct injuries, 2 colon perforations, 5 tumor seedings, 12 pleural effusions requiring thoracentesis, 1 hemorrhage requiring arterial embolization, and 3 skin burns requiring resection for a total of 30 (2.6%) patient complications. Two deaths occurred within 30 days after MWA in patients with Child class B uncompensated cirrhosis. One patient (age 78) had multi-organ failure and died 14 days after treatment and another patient (age 83) had respiratory and cardiac failure and died 14 days after treatment. Minor complications included fever (83.4%), pain (80.1%), asymptomatic pleural effusion (10.4%), thickening of the gallbladder wall (2.8%), and arterioportal shunt (0.3%), small stricture of the bile duct (0.4%) and skin burn requiring no treatment (1.6%). A significantly higher rate of major complications and more ablation sessions were experienced when a noncooled-shaft antenna was used during the period of 1994 to 2005 (n=583) than when newer technology, cooled-shaft antennas were used beginning in 2005 (n=583).

Hepatic Metastasis from Primary Cancers from Other Sites

The literature search identified several small studies on MWA for hepatic metastases and 3 systematic reviews. (3, 4, 10) In the Ong review described above, local recurrence rates for liver metastases after treatment with MWA averaged approximately 15% but varied between 0 and 50% in the 7 studies reviewed that addressed liver metastases. As noted above, Ong and colleagues concluded MWA is a promising treatment option for the treatment of liver tumors but should be reserved for patients not amenable to hepatic resection. Bertot and colleagues conducted a systematic review described above. (4) In 2011, Pathak and colleagues also conducted a systematic review of ablation techniques for colorectal liver metastases, which included 13 studies on MWA totaling 406 patients with a minimum of 1-year follow-up. (10) Mean survival rates were 73%, 30% and 16% and ranged from 40–91.4%, 0–57% and 14–32% at 1-, 3- and 5-years’ follow-up, all respectively. Minor and major complication rates were considered acceptable and ranged from 6.7–90.5% and 0–19%, respectively. Local recurrence rates ranged from 2-14%. The authors acknowledged limitations in the available studies but concluded survival rates for MWA are more favorable than for palliative chemotherapy alone.

Only one RCT comparing the use of MWA for hepatic metastases to the gold standard of surgical resection was identified. In 2000, Shibata et al. reported on a trial of 30 patients with hepatic metastases from colorectal cancer randomly assigned without stratification to treatment with either MWA after laparotomy (n=14) or hepatectomy (n=16). (11) The study began with 40 patients, but 10 patients were excluded because the researchers discovered intraoperatively that these patients did not meet study criteria due to having extensive metastasis or equal to or greater than 10 tumors. The treatment groups of MWA vs. hepatectomy were not significantly different in age (mean age 61 in both groups) number of tumors (mean 4.1 vs. 3.0, respectively) or tumor size (mean 27 mm vs. 34 mm, respectively). The authors reported no significant differences in survival rates following MWA or hepatectomy (27 months vs. 25 months, respectively) and mean disease-free survival (11.3 vs. 13.3 months, respectively). However, intraoperative blood loss was significantly lower and no blood transfusions were required in the MWA group whereas 6 patients in the hepatectomy group required blood transfusions. Complications in the microwave group consisted of one hepatic abscess and one bile duct fistula. In the hepatectomy group, complications were one intestinal obstruction, one bile duct fistula and one wound infection.

In 2011, Lorentzen and colleagues reported on a retrospective review of percutaneous or open MWA in 39 patients with 125 liver metastases from the primary sites of colorectal cancer (n=31), breast cancer (n=6), carcinioid tumor (n=1) and gastrointestinal stromal tumor (n=1). (12) Complete ablation was achieved in 100% of tumors (median size of 1.5 cm) with one treatment session in 34 patients, 2 sessions for 4 patients and 3 sessions for one patient. One case of liver abscess, which resolved after percutaneous drainage, was the only major complication reported. Four minor complications included one incidence of ascites and 3 complaints of puncture site pain. Upon median follow-up of 11 months, local tumor progression was seen in 12 of 125 tumors (9.6%) in 10 of the 39 patients (26%).

In a prospective, single institution Phase II study in 2010, Martin et al. reported on 100 patients treated with 270 open or laparoscopic MWAs for hepatocellular carcinoma (n=17) and liver metastases from the primary sites of colorectal (n=50), carcinoid (n=11) and other cancers (n=22 and included cholangiocarcinoma, metastatic breast, renal cell carcinoma, bladder, carcinoid, melanoma, and sarcoma). (13) Median tumor size was 3.0 cm. Thirty-eight patients were treated with MWA alone, 53 patients had MWA with concomitant hepatic resection while another 9 patients had MWA concomitant with other organ resection. Only 2 patients had incomplete ablations after the procedure. No bleeding complications were experienced, but 2 cases of hepatic abscess and 2 cases of hepatic insufficiency occurred. At median follow-up of 36 months, 5 patients were found to have incomplete ablations and only 2 patients (2%) had local tumor recurrence while 37 patients (37%) developed recurrence at other nonablated sites.

Primary Renal Tumors

No RCTs comparing the use of MWA for renal tumors to the gold standard of nephron-sparing surgical resection or other treatment options were identified. Several small case studies on renal tumors were identified. In 2011, Muto and colleagues reported complete tumor coagulation necrosis in 10 patients treated with laparoscopic MWA for clear cell renal carcinoma with a median tumor size of 2.75 cm. (14) Depending on tumor size, the microwave antennas were used 1 to 3 times for a mean application time of 14.1 minutes. No complications were reported during or after the procedure. Bai et al. in 2010, reported complete laparoscopic MWA in 17 of 18 clear cell renal carcinoma tumors with a mean tumor size of 2.8 cm. (15) In this study, evidence of disease progression was not found in any of the patients followed up for a median of 20 months including the patient with an incomplete ablation who was followed for 31 months. Complications reported were mild (18.2%), and renal function did not significantly deteriorate. However, in a 2011 study of 10 patients with solid-enhancing renal tumors (median size of 3.65 cm), treated with laparoscopic (n=7) or percutaneous (n=3) MWA, Castle and colleagues reported tumor recurrence was seen in 3 of 8 tumors upon mean follow-up time of 17.9 months. (16) Since tumor size was larger in this study, mean ablation time was 21 minutes. Additionally, 20% of patients experienced intraoperative complications while 40% experienced postoperative complications including, perinephric hematoma, splenic capsular tear, pleuritic chest pain, skin burn, fever, hematuria, genitofemoral neuralgia and urinoma.

One study by Guan and colleagues, in 2010, reported on the safety of retroperitoneoscopic MWA for renal hamartoma. (17) In this case series report, 15 of 16 patients had complete tumor ablation. Disease recurrence was not found in all 16 patients at a median follow-up of 16 months.

Other Tumors or Conditions

No RCTs on the use of MWA for other tumors or conditions were identified. Case studies and retrospective reviews on MWA for adrenal carcinoma, (18) intrahepatic primary cholangiocarcinoma, (19) lung tumors (20-22) and other non-oncologic conditions (i.e., bleeding peptic ulcers, esophageal varices, and secondary hypersplenism) were identified. A review of ablation techniques for breast cancer found only 0-8% of breast tumors were completely ablated with MWA. (23) The authors noted the studies identified for the review were mostly feasibility and pilot studies conducted in research settings.

Ongoing Clinical Trials

A November 12, 2011 search of clinical trials in online site ClinicalTrials.gov identified one randomized trial on MWA. In this Phase III, prospective RCT, MWA will be compared to radiofrequency ablation in the treatment of unresectable hepatocellular carcinoma no more than 6 cm in diameter (NCT01340105). Patients may only have up to 3 nodules that are amenable to ablation and do not have any major vascular or bile duct invasion. Patients with resectable tumors may be included in the study if local ablation is preferred. The trial began in April 2011 in Hong Kong, China and expects to recruit 92 patients.

Clinical Input Received through Physician Specialty Societies and Academic Medical Centers

While the various physician specialty societies and academic medical centers may collaborate with and make recommendations during this process through the provision of appropriate reviewers, input received does not represent an endorsement or position statement by the physician specialty societies or academic medical centers, unless otherwise noted.

2011

In response to requests, input was received from 2 physician specialty societies (3 reviews) and 4 academic medical centers (6 reviews) while this policy was under development. Eight reviewers considered microwave ablation investigational to treat primary tumors such as hepatocellular carcinoma, benign and malignant renal tumors, lung tumors, adrenal tumors or cholangiocarcinoma. The reviewers noted insufficient evidence and a need for further studies on microwave ablation. However, 1 reviewer indicated microwave ablation for primary tumors including, but not limited to hepatocellular carcinoma, benign and malignant renal tumors, lung tumors, adrenal tumors and cholangiocarcinoma, may be considered a treatment option and 1 other reviewer indicated microwave ablation for renal tumors may be considered a treatment option.

Four reviewers considered microwave ablation investigational to treat liver metastases. However, 2 reviewers indicated microwave ablation for liver metastases may be considered a treatment option. One reviewer noted microwave ablation may be appropriate for tumors not amenable to radiofrequency ablation or other local treatments. This reviewer also indicated microwave ablation may be more appropriate for tumors located near large blood vessels.

Summary

In summary, based on review of the published data (which consists largely of small case series and limited randomized trials) and clinical input, there is insufficient evidence to permit conclusions concerning the comparative effectiveness of microwave ablation (MWA) to other ablative techniques on health outcomes. Therefore, MWA of hepatocellular carcinoma, liver metastases from primary cancers from other sites, renal cell carcinoma, other renal tumors and all other tumors is considered investigational. Studies show MWA results in a wide range of complete tissue ablation (from 50-100%) depending on tumor size with complete ablation common and nearing 100% with smaller tumors (e.g., ≤3 cm). Recurrence of tumors at ablated sites is very low. However, recurrence of tumors at nonablated sites is common and may be due to the nature of the disease state (e.g., in hepatocellular carcinoma). Intraoperative and postoperative minor and major complications are low, especially in cases where tumors are smaller and more accessible. While some earlier studies found MWA required more treatment sessions to achieve adequate ablation, more recent studies using newer MWA technology that deliver larger ablation zones with cooled-shaft antennas have demonstrated shorter ablation times and fewer complications. While MWA has theoretical advantages over radiofrequency ablation, studies on the use of MWA with larger numbers of patients and longer follow-up are needed to adequately assess health outcomes. Patient selection criteria and rationale for using MWA over other established techniques such as surgical resection or radiofrequency ablation are needed. Results of the ongoing Phase III trial comparing MWA to radiofrequency ablation will provide additional information in determining the role of MWA in the treatment of hepatocellular carcinoma. Information from additional future studies may indicate a role for MWA for the treatment of tumors for control of local tumor growth, palliation of symptoms, and extended survival durations in tumors that are not amenable to resection or in patients who are not surgical candidates. However, in total, the current available evidence is insufficient to permit conclusions on net health outcomes of MWA of tumors, and this technique is considered investigational.

Practice Guidelines and Position Statements

The National Comprehensive Cancer Network (NCCN) guidelines on hepatobiliary cancers lists MWA (along with radiofrequency ablation, cryoablation and percutaneous alcohol injection) as a treatment option for hepatocellular carcinoma tumors in patients who are not candidates for potential curative treatments (e.g., resection and transplantation). (24) The guidelines indicate hepatocellular carcinoma tumors should be equal to or less than 3 centimeters and accessible by percutaneous, laparoscopic or open approaches. Hepatocellular carcinoma tumors between 3-5 centimeters may also be treated with ablation when used in combination with arterial embolization. Additionally, the tumor location must be accessible to permit ablation of the tumor and tumor margins without ablating major vessels, bile ducts, the diaphragm or other abdominal organs. However, there are only 2 reviews cited in the guideline on ablative techniques to support these recommendations that are not specific to MWA [category 2A].

In the NCCN guidelines on neuroendocrine tumors, MWA is listed as one treatment option (along with radiofrequency ablation or cryoablation) for liver metastases as hepatic regional therapy in carcinoid tumors and pancreatic endocrine (islet cell) tumors when there is unresectable disease and/or distant metastases. (25) These guidelines note, currently, there are limited prospective data and no randomized clinical trials on ablative therapies (including MWA), and data on these ablative techniques are emerging. Additionally, the 2 articles cited in the guideline on ablative techniques are not specific to MWA [category 2A].

The National Institute for Health and Clinical Excellence (NICE) published guidance on MWA for the Treatment of Metastases in the Liver in May 2007. This guidance indicates “Current evidence on microwave ablation for the treatment of liver metastases raises no major safety concerns. The evidence on efficacy is inadequate in quantity and quality. Therefore this procedure should only be used with special arrangements for clinical governance, consent and audit or research.” (26)

The American College of Chest Physicians (ACCP) evidence-based guidelines on the treatment of non-small cell lung cancer note that insufficient data are available on ablative therapies including MWA of tumors. (27)

Medicare National Coverage

No national coverage determination.

References:

  1. Shibata T, Iimuro Y, Yamamoto Y et al. Small hepatocellular carcinoma: comparison of radio-frequency ablation and percutaneous microwave coagulation therapy. Radiology 2002; 223(2):331-7.
  2. Taniai N, Yoshida H, Mamada Y et al. Is intraoperative adjuvant therapy effective for satellite lesions in patients undergoing reduction surgery for advanced hepatocellular carcinoma? Hepatogastroenterology 2006; 53(68):258-61.
  3. Ong SL, Gravante G, Metcalfe MS et al. Efficacy and safety of microwave ablation for primary and secondary liver malignancies: a systematic review. Eur J Gastroenterol Hepatol 2009; 21(6):599-605.
  4. Bertot LC, Sato M, Tateishi R et al. Mortality and complication rates of percutaneous ablative techniques for the treatment of liver tumors: a systematic review. Eur Radiol 2011; 21(12):2584-96.
  5. Lu MD, Xu HX, Xie XY et al. Percutaneous microwave and radiofrequency ablation for hepatocellular carcinoma: a retrospective comparative study. J Gastroenterol 2005; 40(11):1054-60.
  6. Liang P, Wang Y, Yu X et al. Malignant liver tumors: treatment with percutaneous microwave ablation--complications among cohort of 1136 patients. Radiology 2009; 251(3):933-40.
  7. Simo KA, Sereika SE, Newton KN et al. Laparoscopic-assisted microwave ablation for hepatocellular carcinoma: Safety and efficacy in comparison with radiofrequency ablation. J Surg Oncol 2011; 104(7):822-9.
  8. Zhou P, Liang P, Dong B et al. Long-term results of a phase II clinical trial of superantigen therapy with staphylococcal enterotoxin C after microwave ablation in hepatocellular carcinoma. Int J Hyperthermia 2011; 27(2):132-9.
  9. Zhou P, Liang P, Yu X et al. Percutaneous microwave ablation of liver cancer adjacent to the gastrointestinal tract. J Gastrointest Surg 2009; 13(2):318-24.
  10. Pathak S, Jones R, Tang JM et al. Ablative therapies for colorectal liver metastases: a systematic review. Colorectal Dis 2011; 13(9):e252-65.
  11. Shibata T, Niinobu T, Ogata N et al. Microwave coagulation therapy for multiple hepatic metastases from colorectal carcinoma. Cancer 2000; 89(2):276-84.
  12. Lorentzen T, Skjoldbye BO, Nolsoe CP. Microwave Ablation of Liver Metastases Guided by Contrast-Enhanced Ultrasound: Experience with 125 Metastases in 39 Patients. Ultraschall Med 2011; 32(5):492-96.
  13. Martin RC, Scoggins CR, McMasters KM. Safety and efficacy of microwave ablation of hepatic tumors: a prospective review of a 5-year experience. Ann Surg Oncol 2010; 17(1):171-8.
  14. Muto G, Castelli E, Migliari R et al. Laparoscopic microwave ablation and enucleation of small renal masses: preliminary experience. Eur Urol 2011; 60(1):173-6.
  15. Bai J, Hu Z, Guan W et al. Initial experience with retroperitoneoscopic microwave ablation of clinical T(1a) renal tumors. J Endourol 2010; 24(12):2017-22.
  16. Castle SM, Salas N, Leveillee RJ. Initial experience using microwave ablation therapy for renal tumor treatment: 18-month follow-up. Urology 2011; 77(4):792-7.
  17. Guan W, Bai J, Hu Z et al. Retroperitoneoscopic microwave ablation of renal hamartoma: middle-term results. J Huazhong Univ Sci Technolog Med Sci 2010; 30(5):669-71.
  18. Li X, Fan W, Zhang L et al. CT-guided percutaneous microwave ablation of adrenal malignant carcinoma: Preliminary results. Cancer 2011; 117(22):5182-8.
  19. Yu MA, Liang P, Yu XL et al. Sonography-guided percutaneous microwave ablation of intrahepatic primary cholangiocarcinoma. Eur J Radiol 2011; 80(2):548-52.
  20. He W, Hu XD, Wu DF et al. Ultrasonography-guided percutaneous microwave ablation of peripheral lung cancer. Clin Imaging 2006; 30(4):234-41.
  21. Vogl TJ, Naguib NN, Gruber-Rouh T et al. Microwave ablation therapy: clinical utility in treatment of pulmonary metastases. Radiology 2011; 261(2):643-51.
  22. Carrafiello G, Mangini M, Fontana F et al. Complications of microwave and radiofrequency lung ablation: personal experience and review of the literature. Radiol Med 2011 [Epub ahead of print].
  23. Zhao Z, Wu F. Minimally-invasive thermal ablation of early-stage breast cancer: a systemic review. Eur J Surg Oncol 2010; 36(12):1149-55.
  24. National Comprehensive Cancer Network (NCCN). Hepatobiliary Cancers (V.1.2012). . Available online at: http://www.nccn.org/professionals/physician_gls/pdf/hepatobiliary.pdf . Last accessed October 2011.
  25. National Comprehensive Cancer Network (NCCN). Neuroendocrine Tumors (V.1.2011). . Available online at: http://www.nccn.org/professionals/physician_gls/pdf/neuroendocrine.pdf . Last accessed October 24, 2011.
  26. National Institute for Clinical Excellence (NICE). Microwave Ablation for the Treatment of Metastases in the Liver. 2011. Available online at: http://guidance.nice.org.uk/IPG406 . Last accessed October 2011.
  27. Scott WJ, Howington J, Feigenberg S et al. Treatment of non-small cell lung cancer stage I and stage II: ACCP evidence-based clinical practice guidelines (2nd edition). Chest 2007; 132(3 Suppl):234S-42S.

Codes

Number

Description

CPT    There are no specific CPT codes for microwave ablation of tumor (see Policy Guidelines)
  76940 Ultrasound guidance for, and monitoring of, parenchymal tissue ablation 
ICD-9 Procedure 50.23 Open ablation of liver lesion or tissue
  50.24 Percutaneous ablation of liver lesion or tissue
  50.25 Laparoscopic ablation of liver lesion or tissue
50.29 Other destruction of lesion of liver
  55.32 Open ablation of renal lesion or tissue
  55.33 Percutaneous ablation of renal lesion or tissue
  55.34 Laparoscopic ablation of renal lesion or tissue
  55.39 Other local destruction or excision of renal lesion or tissue
ICD-9 Diagnosis 155.0 Malignant neoplasm of liver, primary
  155.2 Malignant neoplasm of liver, not specified as primary or secondary
  189.0 Malignant neoplasm of kidney except pelvis
  189.1 Malignant neoplasm of renal pelvis
  197.7 Secondary malignant neoplasm of respiratory or digestive system; liver, specified as secondary
  198.0 Secondary malignant neoplasm of other specified sites; kidney
  209.24 Malignant carcinoid tumor of the kidney
  209.72 Secondary neuroendocrine tumor of liver
  235.3 Neoplasm of uncertain behavior, liver and biliary passages
  236.91 Neoplasm of uncertain behavior, kidney and ureter
HCPCS No code  

ICD-10-CM (effective 10/1/13)

C22.0 Liver cell carcinoma
  C22.2 Hepatoblastoma
  C22.3 Angiosarcoma of liver
  C22.4 Other sarcomas of liver
  C22.7 Other specified carcinomas of liver
  C22.8 Malignant neoplasm of liver, primary, unspecified as to type
  C22.9 Malignant neoplasm of liver, not specified as primary or secondary
  C64.1-C65.9 Malignant neoplasm of kidney, code range
  C7A.093 Malignant carcinoid tumor of the kidney
  C7B.02 Secondary carcinoid tumors of liver
  C78.7 Secondary malignant neoplasm of liver and intrahepatic bile duct
  C79.00-C79.02 Secondary malignant neoplasm of kidney and renal pelvis
  D37.6 Neoplasm of uncertain behavior of liver, gallbladder and bile ducts
  D41.00-D41.02 Neoplasm of uncertain behavior of kidney
  D41.10-D41.12 Neoplasm of uncertain behavior of renal pelvis
ICD-10-PCS (effective 10/1/13)   ICD-10-PCS codes are only used for inpatient services. There is no specific ICD-10-PCS code for this procedure.
  0F500ZZ, 0F510ZZ, 0F520ZZ, 0F503ZZ, 0F513ZZ, 0F523ZZ, 0F504ZZ, 0F514ZZ, 0F524ZZ Destruction, hepatobiliary system and pancreas, liver, open, percutaneous or percutaneous endoscopic approaches, code list
  0T500ZZ, 0T503ZZ, 0T504ZZ, 0T508ZZ, 0T510ZZ, 0T513ZZ, 0T514ZZ, 0T518ZZ, 0T530ZZ, 0T533ZZ, 0T534ZZ, 0T538ZZ, 0T540ZZ, 0T543ZZ, 0T544ZZ, 0T548ZZ Destruction, urinary system, kidney, open, percutaneous, percutaneous endoscopic, or via natural or artificial opening endoscopic approaches, code list
Type of service Surgery  
Place of service    


Index

Microwave tumor ablation
Microwave coagulation therapy
Tumors, microwave ablation 


Policy History

Date

Action

Reason

12/08/11

Add to Surgery section

New Policy created with literature review through October 2011; investigational for all tumors.