Blue Cross of Idaho Logo

Express Sign-on

Thank you for registering with Blue Cross of Idaho

If you are an Individual or Family Member, please register here.

If you are a Medicare Advantage or Medicare Supplement member, please register here.


MP 7.01.134 Implantable Sinus Stents for Postoperative Use Following Endoscopic Sinus Surgery

Medical Policy    
Original Policy Date
July 2012
Last Review Status/Date
Reviewed with literature search/11:2014
  Return to Medical Policy Index


Our medical policies are designed for informational purposes only and are not an authorization, or an explanation of benefits, or a contract. Receipt of benefits is subject to satisfaction of all terms and conditions of the coverage. Medical technology is constantly changing, and we reserve the right to review and update our policies periodically.


Endoscopic sinus surgery (ESS) is typically performed in patients with chronic rhinosinusitis unresponsive to conservative treatment. The surgery is associated with improvements in symptoms in up to 90% of more appropriately selected patients. Because of the high success rates and minimally invasive approach, these procedures have rapidly increased in frequency, with an estimated 250,000 procedures performed annually in the U.S.(1) They can be done either in the physician’s office under local anesthesia or in the hospital setting under general anesthesia.

ESS involves the removal of small pieces of bone, polyps, and débridement of tissue within the sinus cavities. There are a number of variations on the specific approach, depending on the disorders that are being treated and the preferences of the treating surgeon. For all procedures, there is a substantial amount of postoperative inflammation and swelling, and postoperative care is therefore a crucial component of ESS.

There are a number of postoperative treatment regimens, and the optimal regimen is not certain. Options include saline irrigation, nasal packs, topical steroids, systemic steroids, topical decongestants, oral antibiotics, and/or sinus cavity débridement. There have been a number of randomized controlled trials (RCTs) that have evaluated various treatment options, but all different strategies have not been rigorously evaluated.(2-5) A systematic review evaluated the evidence for these therapies.(1) The authors of this review concluded that the evidence was not strong for any of these treatments but that some clinical trial evidence supported improvements in outcomes. The strongest evidence was for use of nasal saline irrigation, topical nasal steroid spray, and sinus cavity débridement.

Some form of sinus packing is generally performed postoperatively. Simple dressings moistened with saline can be inserted manually following surgery. Foam dressings are polysaccharide substances that form a gel when hydrated and can be used as nasal packs for a variety of indications.(1) Middle meatal spacers are splint-like devices that prop open the sinus cavities post-ESS, but are not capable of drug delivery. There is some RCT evidence that middle meatal spacers may reduce the formation of synechiae following ESS, although the available studies have significant heterogeneity in this outcome.(6)

Implantable sinus stents are another option for postoperative management following ESS. These implants are inserted under endoscopic guidance. They are intended to stabilize the sinus openings and the turbinates, reduce edema, and/or prevent obstruction by adhesions. They also have the capability of being infused with medication that can be delivered topically over an extended period of time, and this local delivery of medications may be superior to topical application in the postoperative setting.

Regulatory Status

The PROPEL™ system was granted U.S. Food and Drug Administration (FDA) approval under the premarketing approval program in August 2011. This device is a self-expanding, bioabsorbable, steroid-eluting stent that is intended for use in the ethmoid sinus. It is placed via endoscopic guidance using a plunger that is included with the device. Steroids (mometasone furoate) are embedded in a polyethylene glycol polymer, which allows sustained release of the drug over an approximate duration of 30 days. The device is dissolvable over a period of several weeks, and therefore does not require removal. In September 2012, a shortened version of the Propel device, the Propel Mini Sinus Implant, was approved for use in patients older than age 18 years following ethmoid sinus surgery. FDA product code: OWO

The Relieva Stratus™ MicroFlow spacer is a balloon-based device that acts as a spacer and medication delivery system. It was FDA-approved under the 510(k) program in October 2011. It is indicated for use as a postoperative spacer to maintain an opening to the sinuses within the first 14 days postoperatively. It is placed via a catheter under endoscopic guidance. This device is temporary and requires manual removal after 30 days, with implantation of a new device if needed. It is approved for infusion with saline, but not for use with other medications such as steroids. This device is no longer marketed in the U.S.


The use of implantable sinus stents for postoperative treatment following endoscopic sinus surgery is considered investigational.

Policy Guidelines

Sinus stents are defined as implantable devices that are specifically designed to improve patency and/or deliver local medication. These are distinguished from sinus packing and variations on packing devices that are routinely employed post sinus surgery.

Foam dressings, such as SinuFoam™, are used as nasal packs for a variety of conditions, including nosebleeds, and have also been used post-ESS. These are considered different types of nasal packing.

Middle meatal spacers are related but separate devices that are intended to maintain sinus patency post-ESS. They are splint-like devices that are inserted directly rather than under endoscopic guidance, and they do not have the capability of delivering local medication.


There are no specific CPT codes for insertion of these devices.

There is a HCPCS code for the Propel device

S1090: Mometasone furoate sinus implant, 370 micrograms.

Benefit Application
BlueCard/National Account Issues

State or federal mandates (e.g., FEP) may dictate that all FDA-approved devices, drugs, or biologics may not be considered investigational, and thus use of these devices may be assessed only on the basis of their medical necessity.


This policy was created in July 2012 and updated periodically with literature reviews, most recently through September 29, 2014. The following is a summary of the key findings to date.

Randomized controlled trials (RCTs) are important in this area in order to adequately compare implantable stents to alternative treatment regimens and to minimize the effects of confounders on outcomes. Case series and trials without control groups offer little in the way of relevant evidence, as improvement in symptoms is expected after endoscopic sinus surgery (ESS) and because there are multiple clinical and treatment variables which may confound outcomes.

The most relevant comparison for sinus stents is unclear because there is not a standardized optimal postoperative treatment regimen. A concern with controlled trials is that the control arm may not be treated with optimal intensity, thereby leading to a bias in favor of the device. An example of this is a study design that compares a steroid-eluting stent with a non-steroid-eluting stent. This design will primarily evaluate the efficacy of steroids when delivered by the device, but will not evaluate the efficacy of a stent itself. If the control group does not receive topical or oral steroids postoperatively, then this might constitute undertreatment in the control group and result in a bias favoring the treatment group. Another concern is for the comparison of efficacy of a drug with the efficacy of a drug delivery system. For example, if a steroid-eluting spacer is compared to a control of saline irrigation alone, it will be difficult to separate the efficacy of the drug itself (steroids) from the drug delivery system (stent).

The literature consists of a few, small randomized trials, single-arm case series, and systematic reviews of these studies.

Randomized controlled trials

There are two small RCTs of the Propel™ sinus implant.(7,8) The two Propel™ trials are of similar design and both are sponsored by the manufacturer (Intersect ENT™, Palo Alto, CA.). Both compare an implant that is steroid-eluting versus an identical implant that is not steroid-eluting. Thus these trials test the value of drug delivery via a stent, but do not test the value of a stent itself versus treatment without a stent.

The first RCT of this implant was published in 2011 by Murr et al. (8). A total of 38 patients with refractory chronic rhinosinusitis were included in the efficacy evaluation, and an additional 5 patients were enrolled for a safety evaluation. An intra-patient control design was used, meaning that each patient received a drug-eluting stent on one side and a non-drug-eluting stent on the other via random assignment. Patients were not permitted to use topical or oral steroids for 30 days following the procedure. A 14-day course of antibiotics was given to all patients. The primary end point was the degree of inflammation recorded on follow-up endoscopy at day 21 postprocedure, as scored by a 100-mm visual analog scale (VAS). There were also semiquantitative grading performed for polypoid changes, middle turbinate position, and adhesions/synechiae. The clinicians recording the outcomes were the same physicians who were treating the patients. One patient withdrew prior to study completion.

The difference in inflammation scores at 21 days was significant in favor of the steroid-eluting group. The estimated difference in scores from graphical representation was approximately 18 units on the 0 to 100 VAS scale. The percent of patients having polypoid changes was 18.4% in the steroid-eluting group versus 36.8% in the non-steroid-eluting group (p=0.039). Adhesions were also significantly less common in the steroid-eluting group (5.3% vs 21.1%, p=0.03). There were no significant differences in the appearance or position of the middle turbinate.

The Advance II trial(7) was an RCT of the Propel™ sinus implant for 105 patients with chronic rhinosinusitis refractory to medical management. This study also used an intrapatient control design with each patient receiving a drug-eluting stent on one side and a non-drug-eluting stent on the other via random assignment. Patients were not permitted to use topical or oral steroids for 30 days following the procedure. A 14-day course of antibiotics was given to all patients. The primary efficacy outcome was reduction in the need for postoperative interventions at day 30 following the procedure. A panel of 3 independent experts, who were blinded to treatment assignment and clinical information, viewed the endoscopy results and determined whether an intervention was indicated. The primary safety end point was the absence of clinically significant increased ocular pressure through day 90.

Three patients were lost to follow-up (2.9%), and 9 patients (8.6%) could not be evaluated because the video of the endoscopy could not be graded. Two patients had the device removed within 30 days of placement. Of the remaining patients, the need for postoperative intervention by expert judgment was found in 33.3% of patients in the steroid-eluting arm versus 46.9% in the non-steroid-eluting arm (p=0.028). According to the judgments of the clinical investigators who were treating the patients, intervention was required in 21.9% of the steroid-eluting group and 31.4% of the non-steroid-eluting group (p=0.068). The reduction in interventions was primarily driven by a 52% reduction in lysis of adhesions (p=0.005). The primary safety hypothesis was met, as there were no cases of clinically significant increases in ocular pressure recorded over the 90-day period following the procedure.

Nonrandomized studies

The ADVANCE study(9) was a prospective, multicenter single-arm trial of 50 patients who were scheduled to undergo ESS. The end points evaluated on follow-up endoscopies were the degree of inflammation scored on a 100-mm VAS and semiquantitative grading for polypoid changes, middle turbinate position, and adhesions. By day 7 postprocedure, the inflammation scores were in the “minimal” range and remained there for the rest of the time points. At 1 month, polypoid lesions were present in 10% of patients, adhesions in 1.1%, and middle turbinate lateralization in 4.4%. Scores on the Sino-Nasal Outcome Test-22 and the Rhinosinusitis Disability Index improved significantly in the first month postprocedure.

In 2014, Matheny et al reported results from a single-arm case series evaluating the use of office-based placement of a mometasone-eluting absorbable stent (PROPEL device) within 7 days of ESS including bilateral ethmoidectomy.(10) Eligible patients had chronic rhinosinusitis with or without nasal polyps and were treated by 1 of 3 surgeons. The surgical procedure was ESS with complete ethmoidectomy, followed by packing with a chitosan-polyethylene glycol absorbable dressing. At outpatient follow-up scheduled 5 to 7 days postsurgery, patients underwent débridement of the ethmoid cavity with placement of the steroid-eluting stent. Twenty patients who underwent 40 stent placements were included. Complications included acute sinusitis in 2 patients between 2 and 4 weeks postsurgery. Sinuses were evaluated based on video endoscopy by an independent reviewer using a 100-mm VAS and the standardized case report form described by Murr et al.(8) Ethmoid sinus inflammation was reduced from 25.6 at baseline to 18.9 at week for (p=0.034). The mean total SNOT-20 score was reduced (improved)
from 42.8 at baseline to 18.4 at week 2 and 8.9 at week 4. The procedure was generally well tolerated.

Also in 2014, Lavigne et al reported results from a case series of 12 patients who underwent placement of an investigational mometasone-eluting absorbable stent described as similar to the PROPEL device, but with differences in stent structure to target obstructed sinuses, for recurrent nasal polyposis after ESS.(11) Eligible patients had chronic sinusitis and had undergone bilateral ethmoidectomy more than 90 days before enrollment, but had refractory polyposis on at least 1 side that was at least grade 2 on a 0 to 4 point scale. All implants were placed in the office setting. The average SNOT-22 scores (reported as a normalized value with a total possible score that could range from 0-5) changed from 2.19 at baseline to 1.48 at day 7 (p<0.027), and continued to demonstrate improvements by the 6-month follow-up. The mean bilateral polyp grade (clinician-assessed) improved from 4.5 at baseline to 2.8 at day 7 (p<0.003), with continued improvements through 6-month follow-up. No significant adverse events were reported.

Ow et al reported plasma mometasone and cortisol concentrations for 5 patients with recurrent polyposis after bilateral total ethmoidectomy who underwent placement of the same investigational device described by Lavigne et al.(12) Plasma mometasone concentrations were in the undetectable range in 26 of 32 samples at 3, 7, 14, 21, and 30 days postimplant and undetectable in all samples at 21 and 30 days postimplant.

A case series was published of 23 patients with refractory rhinosinusitis who underwent ESS and were treated postoperatively with the Relieva Stratus Microflow Spacer Device infused with triamcinolone.(13) Over a period of 6 months, there were significant improvements on multiple sinus-related outcome measures such as the SNOT-20 and the Lund-McKay CT (computed tomography) scan scores. There were no significant intraoperative or postoperative complications reported.

Systematic reviews

A systematic review of early postoperative care following ESS was published in 2011.(14) This review evaluated a number of different postoperative regimens, including stents. The review included one RCT by Cote et al and 2 nonrandomized studies. Some of the devices included in these studies are considered middle meatal spacers and not included in the review of evidence for this policy. The overall level of evidence was judged as B (RCT with limitations). The authors concluded that topical steroids delivered by the “nonstandard” route required further study and that the results of current studies could not be extrapolated to larger populations. Based on this evidence, they did not recommend use of stents, but considered them an “option” for postoperative care.

Han et al. performed a meta-analysis of the 2 published RCTs of the Propel™ implant,(15) both of which compared a steroid-eluting stent with a non-steroid-eluting stent. The results of the 2 RCTs were combined at the patient level, with reanalysis of the endoscopy videos by a panel of 3 independent ear, nose, and throat experts. The combined results were that the steroid-eluting device reduced postoperative interventions by 35% (p<0.001), reduced lysis of adhesions by 51% (p<0.001), and reduced the need for oral steroids by 46% (p<0.001).

Ongoing and Unpublished Clinical Trials

A search of in September 2014 found 1 ongoing trial evaluating implantable drug-eluting sinus stents:

  • Safety and Efficacy of Bioabsorbable Drug-Eluting Sinus Implant for Chronic Sinusitis (RESOLVE) (NCT01732536) – RESOLVE is a randomized, double-blinded trial to compare the S8 sinus implant, a steroid-eluting stent, with nasal steroid spray in the prevention of recurrent symptoms in patients undergoing revision sinus surgery for chronic sinusitis and recurrent sinus obstruction due to polyps. Enrollment is planned for 100 subjects; the estimated study completion date was May 2014. No results published in the peer-reviewed literature were identified, although the results have been presented in abstract form.(16)

Clinical Input Received through Physician Specialty Societies and Academic Medical Centers

In response to requests, input was received through 1 Physician Specialty Society and 3 Academic Medical Centers while this policy was under review in 2012. While the various Physician Specialty Societies and Academic Medical Centers may collaborate with and make recommendations during this process, through the provision of appropriate reviewers, input received does not represent an endorsement or position statement by the Physician Specialty Societies or Academic Medical Centers, unless otherwise noted. Input was received from 4 academic medical centers. Input overall was mixed, without consensus achieved among the respondents. Some reviewers expressed support for use of these devices post-ESS. Reviewers who supported use cited the RCTs reviewed in this policy as the main source of evidence. Other reviewers did not support use in general following ESS, but considered that a subset of patients may benefit, but there was no consensus on what population this subgroup would include.

Summary of Evidence

Two randomized controlled trials (RCTs) have compared the Propel™ device with steroids with the same device without steroids and reported that the steroid-eluting device reduced postoperative inflammation, reduced the need for oral steroids, and reduced the need for  postoperative reinterventions. These trials primarily evaluate the efficacy of topical steroids when delivered by an implanted device, but do not
evaluate the efficacy of the device versus standard care. The improvements reported in these trials reflect the impact of local steroids, which were withheld in the control arm, as well as the impact of the stent device itself. These trial results are not adequate evidence to conclude that use of the Propel™ device is superior to standard postoperative care following endoscopic sinus surgery (ESS), because the control group did not receive standard postoperative care. In particular, the lack of postoperative steroids of any type in the control group may represent undertreatment compared with usual care.

This evidence is insufficient to determine whether sinus stents improve outcomes when used postoperatively following ESS. Further RCTs are needed that compare the devices with optimal postoperative care without the device to determine whether they can improve postoperative outcomes for patients undergoing ESS. Therefore, the use of postoperative steroid-eluting sinus stents is considered investigational.

Practice Guidelines and Position Statements
No guidelines or statements were identified.

U.S. Preventive Services Task Force Recommendations
Not applicable.

Medicare National Coverage

There is no national coverage determination (NCD). In the absence of an NCD, coverage decisions are left to the discretion of local Medicare carriers.


  1. Rudmik L MJ, Mechor B. Effect of a dexamethasone SinuFoam middle meatal spacer on endoscopic sinus surgery outcomes: A randomized, double-blind, placebo-controlled trial. Int Forum Allergy Rhinol. 2011;December ((epub ahead of print)). PMID
  2. Berlucchi M, Castelnuovo P, Vincenzi A, et al. Endoscopic outcomes of resorbable nasal packing after functional endoscopic sinus surgery: a multicenter prospective randomized controlled study. Eur Arch Otorhinolaryngol. Jun 2009;266(6):839-845. PMID 18946677
  3. Cote DW, Wright ED. Triamcinolone-impregnated nasal dressing following endoscopic sinus surgery: a randomized, double-blind, placebo-controlled study. Laryngoscope. Jun 2010;120(6):1269-1273. PMID 20513050
  4. Freeman SR, Sivayoham ES, Jepson K, et al. A preliminary randomised controlled trial evaluating the efficacy of saline douching following endoscopic sinus surgery. Clin Otolaryngol. Oct 2008;33(5):462-465. PMID 18983380
  5. Rotenberg BW, Zhang I, Arra I, et al. Postoperative care for Samter's triad patients undergoing endoscopic sinus surgery: a double-blinded, randomized controlled trial. Laryngoscope. Dec 2011;121(12):2702-2705. PMID 21997904
  6. Lee JM, Grewal A. Middle meatal spacers for the prevention of synechiae following endoscopic sinus surgery: a systematic review and meta-analysis of randomized controlled trials. Int Forum Allergy Rhinol. May 30 2012. PMID 22648984
  7. Marple BF, Smith TL, Han JK, et al. Advance II: A Prospective, Randomized Study Assessing Safety and Efficacy of Bioabsorbable Steroid-Releasing Sinus Implants. Otolaryngol Head Neck Surg. Jun 2012;146(6):1004-1011. PMID 22301107
  8. Murr AH, Smith TL, Hwang PH, et al. Safety and efficacy of a novel bioabsorbable, steroid-eluting sinus stent. Int Forum Allergy Rhinol. Jan-Feb 2011;1(1):23-32. PMID 22287304
  9. Forwith KD, Chandra RK, Yun PT, et al. ADVANCE: a multisite trial of bioabsorbable steroid-eluting sinus implants. Laryngoscope. Nov 2011;121(11):2473-2480. PMID 22020898
  10. Matheny KE, Carter KB, Jr., Tseng EY, et al. Safety, feasibility, and efficacy of placement of steroid-eluting bioabsorbable sinus implants in the office setting: a prospective case series. Int Forum Allergy Rhinol. Sep 15 2014. PMID 25224654
  11. Lavigne F, Miller SK, Gould AR, et al. Steroid-eluting sinus implant for in-office treatment of recurrent nasal polyposis: a prospective, multicenter study. Int Forum Allergy Rhinol. May 2014;4(5):381-389. PMID 24599580
  12. Ow R, Groppo E, Clutter D, et al. Steroid-eluting sinus implant for in-office treatment of recurrent polyposis: a pharmacokinetic study. Int Forum Allergy Rhinol. Sep 25 2014. PMID 25256638
  13. Catalona PJ TM, Weiss R, Rimash T. The MicroFlow Spacer: A drug-eluting stent for the ethmoid sinus. Indian J Otolaryngol Head Neck Surg. 2011;63(3):258. PMID
  14. Rudmik L, Soler ZM, Orlandi RR, et al. Early postoperative care following endoscopic sinus surgery: an evidence-based review with recommendations. Int Forum Allergy Rhinol. Nov-Dec 2011;1(6):417-430. PMID 22144050
  15. Han JK MB, Smith TL. Effect of steroid-releasing sinus implants on postoperative medical and surgical interventions: an efficacy meta-analysis. Int Forum Allergy Rhinol. 2012;June 2012 (epub ahead of print). PMID
  16. Han J, Forwith K, Brown W, et al. A Randomized, Controlled, Blinded, Multi-Center Study with Bioabsorbable Steroid-Eluting Sinus Implant for In-Office Treatment of Recurrent Sinonasal Polyposis: 3-Month Safety and Efficacy American Rhinologic Society (ARS at AAO) -- 60th Annual Meeting; September 20, 2014, 2014; Orlando, Florida.





CPT    No specific code
ICD-9 Diagnosis   Investigational for all relevent diagnoses
HCPCS S1090 Mometasone furoate sinus implant, 370 micrograms

ICD-10-CM (effective 10/1/15)

  Investigational for all relevent diagnoses
ICD-10-PCS (effective 10/1/15)   Not applicable. ICD-1-PCS are used for inpatient procedures only.


Nasal sinus implant 

Policy History





Add to Surgery section

Policy created with literature review. Policy statement created that sinuses/spacers are investigational for use following endoscopic sinus surgery.

11/08/12 Replace Policy Policy updated with results of clinical vetting, no change to policy statement.
11/14/13 Replace policy Policy updated with literature review through September 2013; no new references added. Title of policy changed to refer to “sinus stents” instead of “sinus stents and spacers” No change to policy statement.
12/12/13 Replace policy - correction only Removed “spacers” language throughout policy for consistency
11/13/14 Replace policy Policy updated with literature review through September 29, 2014. References 10-12 and 16 added. Policy statement unchanged.


Resource Center

Find a Provider Find a Pharmacy Medicare Medicare Formulary