Blue Cross of Idaho Logo

Express Sign-on

Thank you for registering with Blue Cross of Idaho

If you are an Individual or Family Member under age 65, please register here.

If you are an Medicare or Medicare Supplement member, please register here.

New Options for Affordable Health Insurance

 

MP 8.01.27 Hematopoietic Stem-Cell Transplantation for Breast Cancer

Medical Policy    
Section
Therapy
 
Original Policy Date
12/1/99
Last Review Status/Date
Reviewed with literature search/1:2013
Issue
1:2013
  Return to Medical Policy Index

Disclaimer

Our medical policies are designed for informational purposes only and are not an authorization, or an explanation of benefits, or a contract.  Receipt of benefits is subject to satisfaction of all terms and conditions of the coverage.  Medical technology is constantly changing, and we reserve the right to review and update our policies periodically.


Description

The use of high-dose chemotherapy (HDC) and hematopoietic stem cell transplantation (HSCT), instead of standard dose chemotherapy, has been used in an attempt to prolong survival in women with high-risk nonmetastatic and metastatic breast cancer.

Hematopoietic Stem-Cell Transplantation
Hematopoietic stem-cell transplantation (HSCT) refers to a procedure in which hematopoietic stem cells are infused to restore bone marrow function in cancer patients who receive bone-marrow-toxic doses of cytotoxic drugs, with or without whole-body radiation therapy. Bone-marrow stem cells may be obtained from the transplant recipient (autologous SCT) or from a donor (allogeneic SCT). They can be harvested from bone marrow, peripheral blood, or umbilical cord blood and placenta shortly after delivery of neonates. Although cord blood is an allogeneic source, the stem cells in it are antigenically “naive” and thus are associated with a lower incidence of rejection or graft versus host disease. Cord blood is discussed in greater detail in policy No. 7.01.50.

Immunologic compatibility between infused stem cells and the recipient is not an issue in autologous SCT. However, immunologic compatibility between donor and patient is a critical factor for achieving a good outcome of allogeneic SCT. Compatibility is established by typing of human leukocyte antigens (HLA) using cellular, serologic, or molecular techniques. HLA refers to the tissue type expressed at the HLA A, B, and DR loci on each arm of chromosome 6. Depending on the disease being treated, an acceptable donor will match the patient at all or most of the HLA loci (with the exception of umbilical cord blood).

Conventional Preparative Conditioning for HSCT
The success of autologous HSCT is predicated on the ability of cytotoxic chemotherapy with or without radiation to eradicate cancerous cells from the blood and bone marrow. This permits subsequent engraftment and repopulation of bone marrow space with presumably normal hematopoietic stem cells obtained from the patient prior to undergoing bone marrow ablation. As a consequence, autologous HSCT is typically performed as consolidation therapy when the patient’s disease is in complete remission. Patients who undergo autologous HSCT are susceptible to chemotherapy-related toxicities and opportunistic infections prior to engraftment, but not GVHD.

The conventional (“classical”) practice of allogeneic HSCT involves administration of cytotoxic agents (e.g., cyclophosphamide, busulfan) with or without total body irradiation at doses sufficient to destroy endogenous hematopoietic capability in the recipient. The beneficial treatment effect in this procedure is due to a combination of initial eradication of malignant cells and subsequent graft-versus-malignancy (GVM) effect mediated by non-self immunologic effector cells that develop after engraftment of allogeneic stem cells within the patient’s bone marrow space. While the slower GVM effect is considered to be the potentially curative component, it may be overwhelmed by extant disease without the use of pretransplant conditioning. However, intense conditioning regimens are limited to patients who are sufficiently fit medically to tolerate substantial adverse effects that include pre-engraftment opportunistic infections secondary to loss of endogenous bone marrow function and organ damage and failure caused by the cytotoxic drugs. Furthermore, in any allogeneic HSCT, immune suppressant drugs are required to minimize graft rejection and GVHD, which also increases susceptibility of the patient to opportunistic infections.

Reduced-Intensity Conditioning for Allogeneic SCT
Reduced-intensity conditioning (RIC) refers to the pretransplant use of lower doses or less intense regimens of cytotoxic drugs or radiation than are used in traditional full-dose myeloablative conditioning treatments. The goal of RIC is to reduce disease burden, but also to minimize as much as possible associated treatment-related morbidity and non-relapse mortality (NRM) in the period during which the beneficial GVM effect of allogeneic transplantation develops. Although the definition of RIC remains arbitrary, with numerous versions employed, all seek to balance the competing effects of NRM and relapse due to residual disease. RIC regimens can be viewed as a continuum in effects, from nearly totally myeloablative, to minimally myeloablative with lymphoablation, with intensity tailored to specific diseases and patient condition. Patients who undergo RIC with allogeneic HSCT initially demonstrate donor cell engraftment and bone marrow mixed chimerism. Most will subsequently convert to full-donor chimerism, which may be supplemented with donor lymphocyte infusions to eradicate residual malignant cells.

For the purposes of this Policy, the term “reduced-intensity conditioning” will refer to all conditioning regimens intended to be non-myeloablative, as opposed to fully myeloablative (traditional) regimens.

HSCT in Solid Tumors in Adults
HSCT is an established treatment for certain hematologic malignancies; however, its use in solid tumors in adults continues to be largely experimental. Initial enthusiasm for the use of autologous transplant with the use of high-dose chemotherapy and stem cells for solid tumors has waned with the realization that dose intensification often fails to improve survival, even in tumors with a linear-dose response to chemotherapy. With the advent of reduced-intensity allogeneic transplant, interest has shifted to exploring the generation of alloreactivity to metastatic solid tumors via a graft-versus-tumor effect of donor-derived T cells.


Policy 

Single or tandem autologous hematopoietic stem-cell transplantation is considered not medically necessary to treat any stage of breast cancer.

Allogeneic hematopoietic stem-cell transplantation is investigational to treat any stage of breast cancer.


Policy Guidelines  

 

In 2003, CPT centralized codes describing allogeneic and autologous hematopoietic stem-cell transplant services to the hematology section (CPT 38204-38242). Not all codes are applicable for each high-dose chemotherapy/stem-cell support procedure. For example, Plans should determine if cryopreservation is performed. A range of codes describes services associated with cryopreservation, storage, and thawing of cells (38208-38215).

CPT 38208 and 38209 describe thawing and washing of cryopreserved cells
CPT 38210-38214 describe certain cell types being depleted
CPT 38215 describes plasma cell concentration


Benefit Application
BlueCard/National Account Issues  

 

For indications considered investigational, the following considerations may supersede this policy:

  • State mandates requiring coverage for autologous bone marrow transplantation offered as part of NIH-approved clinical trials of autologous bone marrow transplantation.
  • Some plans may participate in voluntary programs offering coverage for patients participating in NIH-approved clinical trials of cancer chemotherapies, including autologous bone marrow transplantation.
  • Some contracts or certificates of coverage (e.g., FEP) may include specific conditions in which autologous bone marrow transplantation would be considered eligible for coverage.

Rationale

History of Hematopoietic Stem Cell Transplantation  for breast cancer

In the late 1980s/early 1990s, initial results of phase II trials for breast cancer and autologous HSCT were promising, showing high response rates in patients with metastatic disease who underwent high-dose consolidation, with a subset of up to 30% remaining disease-free for prolonged periods. (1) In the early 1990s, larger prospective comparisons of conventional-dose chemotherapy to high-dose therapy with SCT were initiated but accrued slowly, with up to a decade from initiation to the reporting of results. (1) The first results from randomized trials at a single institution in early stage and metastatic disease showed survival benefits, but were ultimately shown to be based on fraudulent data. (1) In the interim, though, the treatment became almost standard of care, while many patients received high-dose therapy off protocol, further reducing accrual to ongoing randomized trials. (1) The results of the randomized trials were presented beginning in 1999, and showed little survival benefit; subsequently, the number of HSCT procedures performed for breast cancer has fallen from thousands every year to only a few. (1)

Autologous SCT

The PBT-1 trial randomly assigned patients with a complete response (CR) or partial response (PR) to induction therapy for previously untreated metastatic breast cancer to autologous HSCT (n =101) or to conventional-dose maintenance chemotherapy (n =83) for up to 2 years. (2) Of 553 patients enrolled and given initial induction therapy, only 310 achieved a PR (n =252) or CR (n =58), and only 199 were randomized. Of 72 partial responders assigned to the HSCT arm after initial induction therapy, only 5 (7%) were converted to complete responses. Median survival (24 vs. 26 months, respectively) and overall survival (OS) at 3 years (32% vs. 38%, respectively) did not differ between arms. There also were no statistically significant differences between arms in time to progression (TTP) or progression-free survival (PFS) at 3 years. While treatment duration was substantially shorter for those randomly assigned to HSCT, acute morbidity was markedly more severe than after conventional-dose maintenance.

During 2003 and 2004, 4 trials reported final outcomes analyses from randomized comparisons of autologous HSCT versus conventional-dose chemotherapy for adjuvant therapy of high-risk non-metastatic breast cancer. (3-6) Two of the studies involved women with at least 4 positive axillary lymph nodes, and the other two involved at least 10 positive lymph nodes. The 4 studies pooled included 2,337 patients.

Evidence from these trials did not support the conclusion that autologous HSCT improved outcomes when compared with conventional-dose adjuvant therapy, as no OS difference was seen in any of the studies. An editorial that accompanied one of the trials briefly reviewed and commented on factors contributing to the diffusion of autologous HSCT into routine practice of the treatment of certain breast cancer patients, without adequate testing in randomized clinical trials (RCTs). (7)

A Cochrane systematic review and meta-analysis published in July 2005 pooled data from 6 RCTs on metastatic breast cancer reported through November 2004 (n =438 randomly assigned to autologous HSCT, 412 to conventional-dose therapy). (8) The relative risk (RR) for treatment-related mortality was significantly higher in the arm randomly assigned to HSCT (15 vs. 2 deaths; RR: 4.07; 95% CI: 1.39 –11.88). Treatment-related morbidity also was more severe among those randomly assigned to HSCT. Overall survival did not differ significantly between groups at 1, 3, or 5 years after treatment. Statistically significant differences in event-free survival (EFS) at 1 year (RR: 1.76; 95% CI: 1.40–2.21) and 5 years (RR: 2.84; 95% CI: 1.07–7.50) favored the HSCT arms. Only 1 of the 6 included trials that had followed up all patients for at least 5 years. Reviewers recommended further follow-up for patients randomized in the other 5 trials. They also concluded that, in the interim, patients with metastatic breast cancer should not receive HSCT outside of a clinical trial, since available data showed greater treatment-related mortality and toxicity without improved OS.

A second Cochrane systematic review and meta-analysis, also published in July 2005, included data from 13 RCTs on patients with high-risk (poor prognosis) early breast cancer (N =2,535 randomly assigned to HSCT, 2,529 to conventional-dose therapy). (9) Treatment-related mortality was significantly greater among those randomly assigned to high-dose chemotherapy/autologous SCT (HDC/AuSCT) (65 vs. 4 deaths; RR: 8.58; 95% CI: 4.13, 17.80, respectively). Treatment-related morbidity also was more common and more severe in the high-dose arms. There were no significant differences between arms in OS rates at any time after treatment. Event-free survival was significantly greater in the HSCT group at 3 years (RR: 1.12; 95% CI: 1.06, 1.19, respectively) and 4 years (RR: 1.30; 95% CI: 1.16, 1.45, respectively) after treatment. However, the two groups did not differ significantly with respect to EFS at 5 and 6 years after treatment. Quality of life scores were significantly worse in the HSCT arms than in controls soon after treatment, but differences were no longer statistically significant by 1 year. Reviewers concluded that available data were insufficient to support routine use of HSCT for patients with poor-prognosis early breast cancer.

Hanrahan and colleagues, with a median follow-up of 12 years, demonstrated no recurrence-free or OS advantage for patients with high-risk primary breast cancer treated with autologous HSCT after standard dose chemotherapy (n =39) versus standard chemotherapy alone (n =39). (10) Coombes and colleagues reported on autologous HSCT as adjuvant therapy for primary breast cancer in women free of metastatic disease, with a median follow-up of 68 months. (11) A total of 281 patients were randomly assigned to receive standard chemotherapy or HDC with HSCT. They found no significant difference in relapse-free survival or OS (OS hazard ratio [HR]: 1.18, 95% CI: 0.80-1.75, p =0.40).

A systematic review and meta-analysis published in 2007 included RCTs comparing autologous HSCT to standard-dose chemotherapy in women with early, poor prognosis breast cancer, which included 13 trials to September 2006 with 5,064 patients. (12) Major conclusions were that, at 5 years, EFS approached statistical significance for the high-dose group, but no OS differences were seen. There were more transplant-related deaths in the high-dose group. The end conclusion was that there was insufficient evidence to support routine use of autologous HSCT for treating early, poor prognosis breast cancer.

Crump and colleagues reported the results of a randomized trial of women who had not previously been treated with chemotherapy and had metastatic breast cancer or locoregional recurrence after mastectomy. (13) After initial response to induction therapy, 112 women were allocated to standard chemotherapy and 112 to autologous HSCT. After a median follow-up of 48 months, 79 deaths were observed in the high-dose group and 77 in the standard. No difference in OS was observed between the two groups after a median follow-up of 48 months, with a median OS of 24 months in the HSCT group (95% CI: 21–35 months) and 28 months for the standard chemotherapy group (95% CI: 22–33 months; HR: 0.9; 95% CI: 0.6–1.2; p =0.43).

Biron and colleagues reported the results of a Phase III, open, multicenter, prospective trial of women with metastatic breast cancer (and/or local or regional relapse beyond curative treatment by surgery or radiation). (14) After a CR or at least 50% PR to induction therapy, 88 women were randomly assigned to HSCT, and 91 to no further treatment. No OS difference was seen between the 2 groups, with 3-year survival 33.6% in the high-dose group and 27.3% in the observation group (p =0.8).

Zander and colleagues reported survival data after 6 years of follow-up (15) on a trial that had previously been reported after 3.8 years of follow-up. (8) Women with surgically resected breast cancer and axillary lymph node dissection with 10 or more positive axillary lymph nodes but no evidence of metastatic disease were randomly assigned to standard chemotherapy (n =152) or HSCT (n =150). No difference in OS was observed; the estimated 5-year OS rate in the standard arm was 62% (95% CI: 54-70%) and 64% (95% CI: 56-72%) in the high-dose transplant group.

Nieto and Shpall performed a meta-analysis of all randomized trials published or updated since 2006, focusing on those that compared HDC with standard-dose chemotherapy for high-risk primary breast cancer. (16) The meta-analysis of 15 randomized trials involving patients with high-risk primary breast cancer or metastatic disease (n =6,102) detected an absolute 13% EFS benefit in favor of HDC and autologous HSCT (p =0.0001) at a median follow-up of 6 years. The absolute differences in disease-specific and OS did not reach statistical significance (7 % and 5%, respecitively). Subset analyses suggested that HDC could be particularly effective in patients with triple negative tumors (hormone receptor and HER2-negative). The authors concluded that HDC remains a valid research strategy in certain subpopulations with high-risk primary breast cancer, for example those with triple negative tumors.

 

Tandem Autologous Transplantation

Kroger and colleagues reported on the comparison of single versus tandem autologous HSCT in 187 patients with chemotherapy-sensitive metastatic breast cancer. (17) Only 52 of 85 patients completed the second HDC cycle in the tandem arm, mostly due to withdrawal of consent (most common reason), adverse effects, progressive disease, or death. The rate of CR was 33% in the single-dose arm versus 37% in the tandem arm (p =.48). Although there was a trend toward improved PFS after tandem HSCT, median OS tended to be greater after single versus tandem HDC (29 vs. 23.5 months, respectively; p =0.4). The authors concluded that tandem HSCT cannot be recommended for patients with chemotherapy-sensitive metastatic breast cancer because of a trend for shorter OS and higher toxicity compared with single HSCT.

Schmid and colleagues published results of 93 patients without prior chemotherapy for metastatic breast cancer who were randomly assigned to standard-dose chemotherapy or double HDC with autologous HSCT. (18) The primary study objective was to compare CR rates. Objective response rates for the patients in the high-dose group were 66.7% versus 64.4% for the standard group (p =0.82). There were no significant differences between the two treatments in median TTP, duration of response, or OS (OS 26.9 months vs. 23.4 months for the double high-dose arm versus the standard arm, respectively; p =0.60).

Allogeneic SCT

To date, allogeneic HSCT for breast cancer has mostly been used in patients who have failed multiple lines of conventional chemotherapy. (21)

Ueno and colleagues reported the results of allogeneic HSCT in 66 women with poor-risk metastatic breast cancer from 15 centers who underwent transplantation between 1992 and 2000. (20) Thirty-nine (59%) received myeloablative and 27 (41%) reduced-intensity conditioning (RIC) regimens. A total of 17 (26%) patients had received a prior autologous HSCT. Median follow-up time for survivors was 40 months (range 3 –64 months). Treatment-related mortality was lower in the RIC group (7% vs. 29% at 100 days; p =0.03). Progression-free survival at 1 year was 23% in the myeloablative group versus 8% in the RIC group (p =0.09). Overall survival rates after myeloablative conditioning versus the RIC group were 51% (95% CI: 36 –67%) versus 26% (95% CI: 11 –45%) [p =0.04] at 1 year, 25% (95% CI: 13–40%) versus 15% (95% CI: 3–34%; p =0.33) at 2 years, and 19% (95% CI:  8–33%) versus 7% (95% CI: < 1–25%; p =0.21) at 3 years, respectively.

Fleskens and colleagues reported the results of a Phase II study of 15 patients with metastatic breast cancer treated with HLA-matched reduced-intensity allogeneic HSCT. (23) Median patient age was 49.5 years (range: 39.7-60.8 years), and all patients had been extensively pretreated and had undergone at least 1 palliative chemotherapy regimen for metastatic disease. Treatment-related mortality was 2/15 (13%). One-year PFS was 20% and 1- and 2-year OS was 40% and 20%, respectively. The authors noted no objective tumor responses but concluded that the relatively long PFS suggests a graft-versus-tumor (GVT) effect.

Clinical Trials

The National Cancer Institute clinical trials database (as of December 2012) showed no ongoing Phase III trials for HSCT for breast cancer.

Summary

Randomized trials of autologous hematopoietic stem cell transplantation (HSCT) versus standard dose chemotherapy for patients with high-risk non-metastatic or metastatic breast cancer have not shown a survival advantage with HSCT, with greater treatment-related mortality and toxicity. Therefore, autologous HSCT is considered not medically necessary for this indication.

Nonrandomized studies using reduced-intensity or myeloablative allogeneic HSCT for metastatic breast cancer have suggested a possible graft-versus-tumor effect, but remains investigational for this indication.

Practice Guidelines and Position Statements

 

National Comprehensive Cancer Network guidelines do not address the use of HSCT in the treatment of breast cancer.(24)

Medicare National Coverage

 

 

There is no national coverage determination. 

References:

  1. Vogl DT, Stadtmauer EA. High-dose chemotherapy and autologous hematopoietic stem cell transplantation for metastatic breast cancer: a therapy whose time has passed. Bone Marrow Transplant 2006; 37(11):985-7.
  2. Stadtmauer EA, O'Neill A, Goldstein LJ et al. Conventional-dose chemotherapy compared with high-dose chemotherapy plus autologous hematopoietic stem-cell transplantation for metastatic breast cancer. Philadelphia Bone Marrow Transplant Group. N Engl J Med 2000; 342(15):1069-76.
  3. Leonard RC, Lind M, Twelves C et al. Conventional adjuvant chemotherapy versus single-cycle, autograft-supported, high-dose, late-intensification chemotherapy in high-risk breast cancer patients: a randomized trial. J Natl Cancer Inst 2004; 96(14):1076-83.
  4. Rodenhuis S, Bontenbal M, Beex LV et al. High-dose chemotherapy with hematopoietic stem-cell rescue for high-risk breast cancer. N Engl J Med 2003; 349(1):7-16.
  5. Tallman MS, Gray R, Robert NJ et al. Conventional adjuvant chemotherapy with or without high-dose chemotherapy and autologous stem-cell transplantation in high-risk breast cancer. N Engl J Med 2003; 349(1):17-26.
  6. Zander AR, Kroger N, Schmoor C et al. High-dose chemotherapy with autologous hematopoietic stem-cell support compared with standard-dose chemotherapy in breast cancer patients with 10 or more positive lymph nodes: first results of a randomized trial. J Clin Oncol 2004; 22(12):2273-83.
  7. Hortobagyi GN. What is the role of high-dose chemotherapy in the era of targeted therapies? J Clin Oncol 2004; 22(12):2263-6.
  8. Farquhar C, Marjoribanks J, Basser R et al. High dose chemotherapy and autologous bone marrow or stem cell transplantation versus conventional chemotherapy for women with metastatic breast cancer. Cochrane Database Syst Rev 2005; (3):CD003142.
  9. Farquhar C, Marjoribanks J, Basser R et al. High dose chemotherapy and autologous bone marrow or stem cell transplantation versus conventional chemotherapy for women with early poor prognosis breast cancer. Cochrane Database Syst Rev 2005; (3):CD003139.
  10. Hanrahan EO, Broglio K, Frye D et al. Randomized trial of high-dose chemotherapy and autologous hematopoietic stem cell support for high-risk primary breast carcinoma: follow-up at 12 years. Cancer 2006; 106(11):2327-36.
  11. Coombes RC, Howell A, Emson M et al. High dose chemotherapy and autologous stem cell transplantation as adjuvant therapy for primary breast cancer patients with four or more lymph nodes involved: long-term results of an international randomised trial. Ann Oncol 2005; 16(5):726-34.
  12. Farquhar CM, Marjoribanks J, Lethaby A et al. High dose chemotherapy for poor prognosis breast cancer: systematic review and meta-analysis. Cancer Treat Rev 2007; 33(4):325-37.
  13. Crump M, Gluck S, Tu D et al. Randomized trial of high-dose chemotherapy with autologous peripheral-blood stem-cell support compared with standard-dose chemotherapy in women with metastatic breast cancer: NCIC MA.16. J Clin Oncol 2008; 26(1):37-43.
  14. Biron P, Durand M, Roche H et al. Pegase 03: a prospective randomized phase III trial of FEC with or without high-dose thiotepa, cyclophosphamide and autologous stem cell transplantation in first-line treatment of metastatic breast cancer. Bone Marrow Transplant 2008; 41(6):555-62.
  15. Zander AR, Schmoor C, Kroger N et al. Randomized trial of high-dose adjuvant chemotherapy with autologous hematopoietic stem-cell support versus standard-dose chemotherapy in breast cancer patients with 10 or more positive lymph nodes: overall survival after 6 years of follow-up. Ann Oncol 2008; 19(6):1082-9.
  16. Nieto Y, Shpall EJ. High-dose chemotherapy for high-risk primary and metastatic breast cancer: is another look warranted? Curr Opin Oncol 2009; 21(2):150-7.
  17. Berry DA, Ueno NT, Johnson MM et al. High-dose chemotherapy with autologous stem-cell support as adjuvant therapy in breast cancer: overview of 15 randomized trials. J Clin Oncol 2011; 29(24):3214-23.
  18. Wang J, Zhang Q, Zhou R et al. High-dose chemotherapy followed by autologous stem cell transplantation as a first-line therapy for high-risk primary breast cancer: a meta-analysis. PLoS One 2012; 7(3):e33388.
  19. Kroger N, Frick M, Gluz O et al. Randomized trial of single compared with tandem high-dose chemotherapy followed by autologous stem-cell transplantation in patients with chemotherapy-sensitive metastatic breast cancer. J Clin Oncol 2006; 24(24):3919-26.
  20. Schmid P, Schippinger W, Nitsch T et al. Up-front tandem high-dose chemotherapy compared with standard chemotherapy with doxorubicin and paclitaxel in metastatic breast cancer: results of a randomized trial. J Clin Oncol 2005; 23(3):432-40.
  21. Carella AM, Bregni M. Current role of allogeneic stem cell transplantation in breast cancer. Ann Oncol 2007; 18(10):1591-3.
  22. Ueno NT, Rizzo JD, Demirer T et al. Allogeneic hematopoietic cell transplantation for metastatic breast cancer. Bone Marrow Transplant 2008; 41(6):537-45.
  23. Fleskens AJ, Lalisang RI, Bos GM et al. HLA-matched allo-SCT after reduced intensity conditioning with fludarabine/CY in patients with metastatic breast cancer. Bone Marrow Transplant 2010; 45(3):464-7.
  24. National Comprehensive Cancer Network Clinical Practice Guidelines in Oncology. Breast Cancer. v.3.2012. Available online at: http://www.nccn.org/professionals/physician_gls/PDF/breast.pdf. Last accessed December, 2012.

Codes

Number

Description

CPT  38204  Management of recipient hematopoietic cell donor search and cell acquisition 
  38205  Blood-derived hematopoietic progenitor cell harvesting for transplantation, per collection, allogeneic 
  38206  Blood-derived hematopoietic progenitor cell harvesting for transplantation, per collection, autologous 
  38208  Thawing of previously frozen harvest 
  38209  Washing of harvest 
  38210  Specific cell depletion with harvest, T cell depletion 
  38211  Tumor cell depletion 
  38212  Red blood cell removal 
  38213  Platelet depletion 
  38214  Plasma (volume) depletion 
  38215  Cell concentration in plasma, mononuclear, or buffy coat layer 
  38220  Bone marrow, aspiration only 
  38221  Biopsy, needle or trocar 
  38240  Bone marrow or blood-derived peripheral stem-cell transplantation; allogeneic 
  38241  Bone marrow or blood-derived peripheral stem-cell transplantation; autologous 
  38242  Allogeneic donor lymphocyte infusions 
ICD-9 Procedure  41.01  Autologous bone marrow transplant 
  41.02 Allogeneic bone marrow transplant with purging
  41.03 Allogeneic bone marrow transplant without purging
  41.04  Autologous hematopoietic stem-cell transplant 
  41.05 Allogeneic hematopoietic stem-cell transplant without purging
  41.07 Autologous hematopoietic stem cell transplant with purging
  41.08 Allogeneic hematopoietic stem cell transplant with purging
  41.09 Autologous bone marrow transplant with purging
  41.91  Aspiration of bone marrow from donor for transplant 
  99.79  Other therapeutic apheresis (includes harvest of stem cells) 
ICD-9 Diagnosis  174  Malignant neoplasm of the female breast 
HCPCS  G0265  Cryopreservation, freezing and storage of cells for therapeutic use, each cell line 
  G0266  Thawing and expansion of frozen cells for therapeutic use, each cell line 
  G0267  Bone marrow or peripheral stem-cell harvest, modification or treatment to eliminate cell type(s) (e.g., T cells, metastatic carcinoma) 
  Q0083, Q0084, Q0085  Chemotherapy administration code range 
  J9000, J9001, J9010, J9015, J9017, J9020, J9025, J9027, J9031, J9035, J9040, J9041, J9045, J9050, J9055, J9060, J9062, J9065, J9070, J9080, J9090, J9091, J9092, J9093, J9094, J9095, J9096, J9097, J9098, J9100, J9110, J9120, J9130, J9140, J9150, J9151, J9160, J9165, J9170, J9175, J9178, J9181, J9182, J9185, J9190, J9200, J9201, J9202, J9206, J9208, J9209, J9211, J9212, J9213, J9214, J9215, J9216, J9217, J9218, J9219, J9225, J9226, J9230, J9245, J9250, J9260, J9261, J9263, J9264, J9265, J9266, J9268, J9270, J9280, J9290, J9291, J9293, J9300, J9303, J9305, J9310, J9320, J9340, J9350, J9355, J9357, J9360, J9370, J9375, J9380, J9395, J9600, J9999 Chemotherapy drug code range
 
 
  S2140  Cord blood harvesting for transplantation, allogeneic 
  S2142  Cord blood derived stem-cell transplantation, allogeneic 
  S2150  Bone marrow or blood-derived peripheral stem-cell harvesting and transplantation, allogeneic or autologous, including pheresis, high-dose chemotherapy, and the number of days of post-transplant care in the global definition (including drugs; hospitalization; medical surgical, diagnostic and emergency services) 
ICD-10-CM (effective 10/1/14)   Not medically necessary or investigational for all relevant diagnoses
   C50.011 -C50.929 Malignant neoplasm of nipple and breast, code range
   C79.81 Secondary malignant neoplasm of breast
ICD-10-PCS (effective 10/1/14)   ICD-10-PCS codes are only used for inpatient services.
   30230G0, 30233G0 Transfusion of autologous bone marrow into peripheral vein, code by approach
   30230G1, 30233G1 Transfusion of nonautologous bone marrow into peripheral vein, code by approach
  30240G0, 30243G0 Transfusion of autologous bone marrow into central vein, code by approach
   30240G1, 30243G1 Transfusion of nonautologous bone marrow into central vein, code by approach
   30250G0, 30253G0 Transfusion of autologous bone marrow into peripheral artery, code by approach
   30250G1, 30253G1 Transfusion of nonautologous bone marrow into peripheral artery, code by approach
   30260G0, 30263G0 Transfusion of autologous bone marrow into central artery, code by approach
   30260G1, 30263G1 Transfusion of nonautologous bone marrow into central artery, code by approach
   3E03005, 3E03305 Introduction of other antineoplastic into peripheral vein, code by approach
   3E04005, 3E04305 Introduction of other antineoplastic into central vein, code by approach
   3E05005, 3E05305 Introduction of other antineoplastic into peripheral artery, code by approach
   3E06005, 3E06305 Introduction of other antineoplastic into central artery, code by approach
   30230AZ, 30233AZ Transfusion of stem cells, embryonic into peripheral vein, code by approach
   30230Y0, 30233Y0 Transfusion of autologous stem cells, hematopoietic into peripheral vein, code by approach
   30240AZ, 0243AZ Transfusion of stem cells, embryonic into central vein, code by approach
   30240Y0, 30243Y0 Transfusion of autologous stem cells, hematopoietic into central vein, code by approach
   30250Y0, 30253Y0 Transfusion of autologous stem cells, hematopoietic into peripheral artery, code by approach
   30260Y0, 30263Y0 Transfusion of autologous stem cells, hematopoietic into central artery, code by approach
    30230Y1, 30233Y1 Transfusion of nonautologous stem cells, hematopoietic into peripheral vein, code by approach
   30240Y1, 30243Y1 Transfusion of nonautologous stem cells, hematopoietic into central vein, code by approach
   30250Y1, 30253Y1 Transfusion of nonautologous stem cells, hematopoietic into peripheral artery, code by approach
   30260Y1, 30263Y1 Transfusion of nonautologous stem cells, hematopoietic into central artery, code by approach
   079T00Z, 079T30Z, 079T40Z

Drainage of bone marrow with drainage device, code by approach

   079T0ZZ, 079T4ZZ Drainage of bone marrow, code by approach
    07DQ0ZZ, 07DQ3ZZ Extraction of sternum bone marrow, code by approach
   07DR0ZZ, 07DR3ZZ Extraction of iliac bone marrow, code by approach
   07DS0ZZ, 07DS3ZZ Extraction of vertebral bone marrow, code by approach
   6A550ZT, 6A551ZT Pheresis of cord blood stem cells, code for single or multiple
   6A550ZV, 6A551ZV Pheresis of hematopoietic stem cells, code for single or multiple
Type of Service  Therapy 
Place of Service  Inpatient/Outpatient 

 


Index

 

Breast Cancer, High-Dose Chemotherapy
High-Dose Chemotherapy; Breast Cancer  


Policy History

 

Date Action Reason
12/01/99 Add to Therapy section New policy. Policy represents revision of original policy No. 8.01.15 to focus entirely on breast cancer. Policy statement unchanged
12/18/02 Replace policy Policy updated; references added, with discussion of randomized trials. Policy statements unchanged. Updated CPT codes
11/09/04 Replace policy Policy updated; references added. Policy statement on tandem transplants was clarified; however, the policy statements were otherwise unchanged
12/14/05 Replace policy Policy updated; references added. Policy statement was changed to investigational for all breast cancer indications
12/12/06 Replace policy Policy updated with literature review; policy statement unchanged. Reference numbers 42-44 added
12/13/07 Replace Policy Policy updated with literature review; policy statements unchanged.
12/11/08 Replace policy  Policy updated with literature review; Description, Rationale, and Reference sections revised extensively. Reference list consolidated; reference numbers 14, 16-17, and 19-23 added. Terminology in policy statements modified; however, intent of policy statements remains unchanged. “High-dose chemotherapy” removed from title. 
12/03/09 Replace policy Policy updated with literature review; references 13 to 16 added; reference 21 updated. Description extensively revised. Policy statement for single or tandem autologous transplant changed to “not medically necessary.” No other changes to policy statements
01/13/11 Replace policy Policy updated with literature search; reference 21 added; reference 22 updated. No change to policy statements
1/12/12 Replace policy Policy updated with literature search; no references added; reference 22 updated. No change to policy statements
1/10/13 Replace policy Policy updated with literature search, references 17 and 18 added. No change to policy statements.

 

Berry and colleagues performed a meta-analysis with individual patient data from 15 randomized trials comparing autologous HSCT with HDC (n=3,118) to standard chemotherapy (n= 3,092) for patients with high-risk primary breast cancer. (17) A survival analysis was adjusted for trial, age, number of positive lymph nodes, and hormone receptor status. HSCT was associated with a non-significant 6% reduction in risk of death (HR: 0.94; 95% CI: 0.87-1.02; p=0.13) and a significant reduction in the risk of recurrence (HR: 0.87; 95% CI: 0.81-0.93; p<0.001). Toxic death was higher in the HSCT group with 72 (6%) of 1,207 deaths in these trial arms compared to 17 (1.4%) of 1,261 deaths in the standard therapy arms. In a subgroup analysis, the authors investigated whether age, number of positive lymph nodes, tumor size, histology, hormone receptor status, or HER2 status impacted survival when comparing HSCT versus standard treatment. The authors found that HER2-negative patients receiving HSCT had a 21% reduction in the risk of death and HER2-negative and hormone receptor negative patients receiving HSCT had a 33% reduction in the risk of death. In their discussion, the authors state that this relationship could be spurious due to the amount of missing data on HER2 status and suggest that HSCT is unlikely to show much benefit in these subgroups of patients.

A meta-analysis by Wang et al. included aggregate data from 14 trials (n=5,747) published since March 2010. (18) Clinical trials of patients receiving HSCT as a first-line treatment for primary breast cancer were eligible for inclusion. A higher treatment-related mortality was found among the patients who received HSCT compared to standard chemotherapy (RR=3.42, 95% CI: 1.32-8.86). Overall survival did not differ significantly between groups with a hazard ratio of 0.91 (95% CI: 0.82-1.00) for the HSCT compared to standard treatment. Risk of secondary, non-breast cancer was higher in the HSCT group (RR=1.28, 95% CI: 0.82-1.98). Disease free survival was better in the HSCT group compared to chemotherapy alone (RR=0.89, 95% CI: 0.79-0.99). Patients receiving HSCT had a greater risk of dying during remission than patients treated with nonmyeloablative chemotherapy due to the toxicity of the regimen. This increase in treatment-related mortality may help explain why there was no observed overall survival benefit for patients receiving HSCT when disease-free survival was observed to be superior to standard chemotherapy.